/usr/lib/python3/dist-packages/vcf/model.py is in python3-pyvcf 0.6.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | from abc import ABCMeta, abstractmethod
import collections
import sys
import re
try:
from collections import Counter
except ImportError:
from counter import Counter
allele_delimiter = re.compile(r'''[|/]''') # to split a genotype into alleles
class _Call(object):
""" A genotype call, a cell entry in a VCF file"""
__slots__ = ['site', 'sample', 'data', 'gt_nums', 'gt_alleles', 'called', 'ploidity']
def __init__(self, site, sample, data):
#: The ``_Record`` for this ``_Call``
self.site = site
#: The sample name
self.sample = sample
#: Namedtuple of data from the VCF file
self.data = data
if hasattr(self.data, 'GT'):
self.gt_alleles = [(al if al != '.' else None) for al in allele_delimiter.split(self.data.GT)]
self.ploidity = len(self.gt_alleles)
self.called = all([al != None for al in self.gt_alleles])
self.gt_nums = self.data.GT if self.called else None
else:
#62 a call without a genotype is not defined as called or not
self.gt_alleles = None
self.ploidity = None
self.called = None
self.gt_nums = None
def __repr__(self):
return "Call(sample=%s, %s)" % (self.sample, str(self.data))
def __eq__(self, other):
""" Two _Calls are equal if their _Records are equal
and the samples and ``gt_type``s are the same
"""
return (self.site == getattr(other, "site", None)
and self.sample == getattr(other, "sample", None)
and self.gt_type == getattr(other, "gt_type", None))
def __getstate__(self):
return dict((attr, getattr(self, attr)) for attr in self.__slots__)
def __setstate__(self, state):
for attr in self.__slots__:
setattr(self, attr, state.get(attr))
def gt_phase_char(self):
return "/" if not self.phased else "|"
@property
def gt_bases(self):
'''The actual genotype alleles.
E.g. if VCF genotype is 0/1, return A/G
'''
# nothing to do if no genotype call
if self.called:
# lookup and return the actual DNA alleles
try:
return self.gt_phase_char().join(str(self.site.alleles[int(X)]) for X in self.gt_alleles)
except:
sys.stderr.write("Allele number not found in list of alleles\n")
else:
return None
@property
def gt_type(self):
'''The type of genotype.
hom_ref = 0
het = 1
hom_alt = 2 (we don;t track _which+ ALT)
uncalled = None
'''
# extract the numeric alleles of the gt string
if self.called:
alleles = self.gt_alleles
if all(X == alleles[0] for X in alleles[1:]):
if alleles[0] == "0":
return 0
else:
return 2
else:
return 1
else:
return None
@property
def phased(self):
'''A boolean indicating whether or not
the genotype is phased for this sample
'''
return self.gt_nums is not None and self.gt_nums.find("|") >= 0
def __getitem__(self, key):
""" Lookup value, backwards compatibility """
return getattr(self.data, key)
@property
def is_variant(self):
""" Return True if not a reference call """
if not self.called:
return None
return self.gt_type != 0
@property
def is_het(self):
""" Return True for heterozygous calls """
if not self.called:
return None
return self.gt_type == 1
class _Record(object):
""" A set of calls at a site. Equivalent to a row in a VCF file.
The standard VCF fields CHROM, POS, ID, REF, ALT, QUAL, FILTER,
INFO and FORMAT are available as properties.
The list of genotype calls is in the ``samples`` property.
Regarding the coordinates associated with each instance:
- ``POS``, per VCF specification, is the one-based index
(the first base of the contig has an index of 1) of the first
base of the ``REF`` sequence.
- The ``start`` and ``end`` denote the coordinates of the entire
``REF`` sequence in the zero-based, half-open coordinate
system (see
http://genomewiki.ucsc.edu/index.php/Coordinate_Transforms),
where the first base of the contig has an index of 0, and the
interval runs up to, but does not include, the base at the
``end`` index. This indexing scheme is analagous to Python
slice notation.
- The ``affected_start`` and ``affected_end`` coordinates are
also in the zero-based, half-open coordinate system. These
coordinates indicate the precise region of the reference
genome actually affected by the events denoted in ``ALT``
(i.e., the minimum ``affected_start`` and maximum
``affected_end``).
- For SNPs and structural variants, the affected region
includes all bases of ``REF``, including the first base
(i.e., ``affected_start = start = POS - 1``).
- For deletions, the region includes all bases of ``REF``
except the first base, which flanks upstream the actual
deletion event, per VCF specification.
- For insertions, the ``affected_start`` and ``affected_end``
coordinates represent a 0 bp-length region between the two
flanking bases (i.e., ``affected_start`` =
``affected_end``). This is analagous to Python slice
notation (see http://stackoverflow.com/a/2947881/38140).
Neither the upstream nor downstream flanking bases are
included in the region.
"""
def __init__(self, CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO, FORMAT,
sample_indexes, samples=None):
self.CHROM = CHROM
#: the one-based coordinate of the first nucleotide in ``REF``
self.POS = POS
self.ID = ID
self.REF = REF
self.ALT = ALT
self.QUAL = QUAL
self.FILTER = FILTER
self.INFO = INFO
self.FORMAT = FORMAT
#: zero-based, half-open start coordinate of ``REF``
self.start = self.POS - 1
#: zero-based, half-open end coordinate of ``REF``
self.end = self.start + len(self.REF)
#: list of alleles. [0] = REF, [1:] = ALTS
self.alleles = [self.REF]
self.alleles.extend(self.ALT)
#: list of ``_Calls`` for each sample ordered as in source VCF
self.samples = samples or []
self._sample_indexes = sample_indexes
# Setting affected_start and affected_end here for Sphinx
# autodoc purposes...
#: zero-based, half-open start coordinate of affected region of reference genome
self.affected_start = None
#: zero-based, half-open end coordinate of affected region of reference genome (not included in the region)
self.affected_end = None
self._set_start_and_end()
def _set_start_and_end(self):
self.affected_start = self.affected_end = self.POS
for alt in self.ALT:
if alt is None:
start, end = self._compute_coordinates_for_none_alt()
elif alt.type == 'SNV':
start, end = self._compute_coordinates_for_snp()
elif alt.type == 'MNV':
start, end = self._compute_coordinates_for_indel()
else:
start, end = self._compute_coordinates_for_sv()
self.affected_start = min(self.affected_start, start)
self.affected_end = max(self.affected_end, end)
def _compute_coordinates_for_none_alt(self):
start = self.POS - 1
end = start + len(self.REF)
return (start, end)
def _compute_coordinates_for_snp(self):
if len(self.REF) > 1:
start = self.POS
end = start + (len(self.REF) - 1)
else:
start = self.POS - 1
end = self.POS
return (start, end)
def _compute_coordinates_for_indel(self):
if len(self.REF) > 1:
start = self.POS
end = start + (len(self.REF) - 1)
else:
start = end = self.POS
return (start, end)
def _compute_coordinates_for_sv(self):
start = self.POS - 1
end = start + len(self.REF)
return (start, end)
# For Python 2
def __cmp__(self, other):
return cmp((self.CHROM, self.POS), (getattr(other, "CHROM", None), getattr(other, "POS", None)))
# For Python 3
def __eq__(self, other):
""" _Records are equal if they describe the same variant (same position, alleles) """
return (self.CHROM == getattr(other, "CHROM", None) and
self.POS == getattr(other, "POS", None) and
self.REF == getattr(other, "REF", None) and
self.ALT == getattr(other, "ALT", None))
# For Python 3
def __lt__(self, other):
return (self.CHROM, self.POS) < (getattr(other, "CHROM", None), getattr(other, "POS", None))
def __iter__(self):
return iter(self.samples)
def __str__(self):
return "Record(CHROM=%(CHROM)s, POS=%(POS)s, REF=%(REF)s, ALT=%(ALT)s)" % self.__dict__
def add_format(self, fmt):
self.FORMAT = self.FORMAT + ':' + fmt
def add_filter(self, flt):
if self.FILTER is None:
self.FILTER = [flt]
else:
self.FILTER.append(flt)
def add_info(self, info, value=True):
self.INFO[info] = value
def genotype(self, name):
""" Lookup a ``_Call`` for the sample given in ``name`` """
return self.samples[self._sample_indexes[name]]
@property
def num_called(self):
""" The number of called samples"""
return sum(s.called for s in self.samples)
@property
def call_rate(self):
""" The fraction of genotypes that were actually called. """
return float(self.num_called) / float(len(self.samples))
@property
def num_hom_ref(self):
""" The number of homozygous for ref allele genotypes"""
return len([s for s in self.samples if s.gt_type == 0])
@property
def num_hom_alt(self):
""" The number of homozygous for alt allele genotypes"""
return len([s for s in self.samples if s.gt_type == 2])
@property
def num_het(self):
""" The number of heterozygous genotypes"""
return len([s for s in self.samples if s.gt_type == 1])
@property
def num_unknown(self):
""" The number of unknown genotypes"""
return len([s for s in self.samples if s.gt_type is None])
@property
def aaf(self):
""" A list of allele frequencies of alternate alleles.
NOTE: Denominator calc'ed from _called_ genotypes.
"""
num_chroms = 0.0
allele_counts = Counter()
for s in self.samples:
if s.gt_type is not None:
for a in s.gt_alleles:
allele_counts.update([a])
num_chroms += 1
return [allele_counts[str(i)]/num_chroms for i in range(1, len(self.ALT)+1)]
@property
def nucl_diversity(self):
"""
pi_hat (estimation of nucleotide diversity) for the site.
This metric can be summed across multiple sites to compute regional
nucleotide diversity estimates. For example, pi_hat for all variants
in a given gene.
Derived from:
\"Population Genetics: A Concise Guide, 2nd ed., p.45\"
John Gillespie.
"""
# skip if more than one alternate allele. assumes bi-allelic
if len(self.ALT) > 1:
return None
p = self.aaf[0]
q = 1.0 - p
num_chroms = float(2.0 * self.num_called)
return float(num_chroms / (num_chroms - 1.0)) * (2.0 * p * q)
@property
def heterozygosity(self):
"""
Heterozygosity of a site. Heterozygosity gives the probability that
two randomly chosen chromosomes from the population have different
alleles, giving a measure of the degree of polymorphism in a population.
If there are i alleles with frequency p_i, H=1-sum_i(p_i^2)
"""
allele_freqs = [1-sum(self.aaf)] + self.aaf
return 1 - sum([x**2 for x in allele_freqs])
def get_hom_refs(self):
""" The list of hom ref genotypes"""
return [s for s in self.samples if s.gt_type == 0]
def get_hom_alts(self):
""" The list of hom alt genotypes"""
return [s for s in self.samples if s.gt_type == 2]
def get_hets(self):
""" The list of het genotypes"""
return [s for s in self.samples if s.gt_type == 1]
def get_unknowns(self):
""" The list of unknown genotypes"""
return [s for s in self.samples if s.gt_type is None]
@property
def is_snp(self):
""" Return whether or not the variant is a SNP """
if len(self.REF) > 1:
return False
for alt in self.ALT:
if alt is None or alt.type != "SNV":
return False
if alt not in ['A', 'C', 'G', 'T', 'N', '*']:
return False
return True
@property
def is_indel(self):
""" Return whether or not the variant is an INDEL """
is_sv = self.is_sv
if len(self.REF) > 1 and not is_sv:
return True
for alt in self.ALT:
if alt is None:
return True
if alt.type != "SNV" and alt.type != "MNV":
return False
elif len(alt) != len(self.REF):
# the diff. b/w INDELs and SVs can be murky.
if not is_sv:
# 1 2827693 . CCCCTCGCA C . PASS AC=10;
return True
else:
# 1 2827693 . CCCCTCGCA C . PASS SVTYPE=DEL;
return False
return False
@property
def is_sv(self):
""" Return whether or not the variant is a structural variant """
if self.INFO.get('SVTYPE') is None:
return False
return True
@property
def is_transition(self):
""" Return whether or not the SNP is a transition """
# if multiple alts, it is unclear if we have a transition
if len(self.ALT) > 1:
return False
if self.is_snp:
# just one alt allele
alt_allele = self.ALT[0]
if ((self.REF == "A" and alt_allele == "G") or
(self.REF == "G" and alt_allele == "A") or
(self.REF == "C" and alt_allele == "T") or
(self.REF == "T" and alt_allele == "C")):
return True
else:
return False
else:
return False
@property
def is_deletion(self):
""" Return whether or not the INDEL is a deletion """
# if multiple alts, it is unclear if we have a transition
if len(self.ALT) > 1:
return False
if self.is_indel:
# just one alt allele
alt_allele = self.ALT[0]
if alt_allele is None:
return True
if len(self.REF) > len(alt_allele):
return True
else:
return False
else:
return False
@property
def var_type(self):
"""
Return the type of variant [snp, indel, unknown]
TO DO: support SVs
"""
if self.is_snp:
return "snp"
elif self.is_indel:
return "indel"
elif self.is_sv:
return "sv"
else:
return "unknown"
@property
def var_subtype(self):
"""
Return the subtype of variant.
- For SNPs and INDELs, yeild one of: [ts, tv, ins, del]
- For SVs yield either "complex" or the SV type defined in the ALT
fields (removing the brackets). E.g.::
<DEL> -> DEL
<INS:ME:L1> -> INS:ME:L1
<DUP> -> DUP
The logic is meant to follow the rules outlined in the following
paragraph at:
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
"For precisely known variants, the REF and ALT fields should contain
the full sequences for the alleles, following the usual VCF conventions.
For imprecise variants, the REF field may contain a single base and the
ALT fields should contain symbolic alleles (e.g. <ID>), described in more
detail below. Imprecise variants should also be marked by the presence
of an IMPRECISE flag in the INFO field."
"""
if self.is_snp:
if self.is_transition:
return "ts"
elif len(self.ALT) == 1:
return "tv"
else: # multiple ALT alleles. unclear
return "unknown"
elif self.is_indel:
if self.is_deletion:
return "del"
elif len(self.ALT) == 1:
return "ins"
else: # multiple ALT alleles. unclear
return "unknown"
elif self.is_sv:
if self.INFO['SVTYPE'] == "BND":
return "complex"
elif self.is_sv_precise:
return self.INFO['SVTYPE']
else:
return self.ALT[0].type
else:
return "unknown"
@property
def sv_end(self):
""" Return the end position for the SV """
if self.is_sv:
return self.INFO['END']
return None
@property
def is_sv_precise(self):
""" Return whether the SV cordinates are mapped
to 1 b.p. resolution.
"""
if self.INFO.get('IMPRECISE') is None and not self.is_sv:
return False
elif self.INFO.get('IMPRECISE') is not None and self.is_sv:
return False
elif self.INFO.get('IMPRECISE') is None and self.is_sv:
return True
@property
def is_monomorphic(self):
""" Return True for reference calls """
return len(self.ALT) == 1 and self.ALT[0] is None
class _AltRecord(object, metaclass=ABCMeta):
'''An alternative allele record: either replacement string, SV placeholder, or breakend'''
def __init__(self, type, **kwargs):
super(_AltRecord, self).__init__(**kwargs)
#: String to describe the type of variant, by default "SNV" or "MNV", but can be extended to any of the types described in the ALT lines of the header (e.g. "DUP", "DEL", "INS"...)
self.type = type
@abstractmethod
def __str__(self):
raise NotImplementedError
def __eq__(self, other):
return self.type == getattr(other, 'type', None)
class _Substitution(_AltRecord):
'''A basic ALT record, where a REF sequence is replaced by an ALT sequence'''
def __init__(self, nucleotides, **kwargs):
if len(nucleotides) == 1:
super(_Substitution, self).__init__(type="SNV", **kwargs)
else:
super(_Substitution, self).__init__(type="MNV", **kwargs)
#: Alternate sequence
self.sequence = str(nucleotides)
def __str__(self):
return self.sequence
def __repr__(self):
return str(self)
def __len__(self):
return len(self.sequence)
def __eq__(self, other):
if isinstance(other, str):
return self.sequence == other
elif not isinstance(other, self.__class__):
return False
return super(_Substitution, self).__eq__(other) and self.sequence == other.sequence
class _Breakend(_AltRecord):
'''A breakend which is paired to a remote location on or off the genome'''
def __init__(self, chr, pos, orientation, remoteOrientation, connectingSequence, withinMainAssembly, **kwargs):
super(_Breakend, self).__init__(type="BND", **kwargs)
#: The chromosome of breakend's mate.
if chr is not None:
self.chr = str(chr)
else:
self.chr = None # Single breakend
#: The coordinate of breakend's mate.
if pos is not None:
self.pos = int(pos)
else:
self.pos = None
#: The orientation of breakend's mate. If the sequence 3' of the breakend's mate is connected, True, else if the sequence 5' of the breakend's mate is connected, False.
self.remoteOrientation = remoteOrientation
#: If the breakend mate is within the assembly, True, else False if the breakend mate is on a contig in an ancillary assembly file.
self.withinMainAssembly = withinMainAssembly
#: The orientation of breakend. If the sequence 3' of the breakend is connected, True, else if the sequence 5' of the breakend is connected, False.
self.orientation = orientation
#: The breakpoint's connecting sequence.
self.connectingSequence = connectingSequence
def __repr__(self):
return str(self)
def __str__(self):
if self.chr is None:
remoteTag = '.'
else:
if self.withinMainAssembly:
remoteChr = self.chr
else:
remoteChr = "<" + self.chr + ">"
if self.remoteOrientation:
remoteTag = "[" + remoteChr + ":" + str(self.pos) + "["
else:
remoteTag = "]" + remoteChr + ":" + str(self.pos) + "]"
if self.orientation:
return remoteTag + self.connectingSequence
else:
return self.connectingSequence + remoteTag
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return super(_Breakend, self).__eq__(other) \
and self.chr == getattr(other, "chr", None) \
and self.pos == getattr(other, "pos", None) \
and self.remoteOrientation == getattr(other, "remoteOrientation", None) \
and self.withinMainAssembly == getattr(other, "withinMainAssembly", None) \
and self.orientation == getattr(other, "orientation", None) \
and self.connectingSequence == getattr(other, "connectingSequence", None)
class _SingleBreakend(_Breakend):
'''A single breakend'''
def __init__(self, orientation, connectingSequence, **kwargs):
super(_SingleBreakend, self).__init__(None, None, orientation, None, connectingSequence, None, **kwargs)
class _SV(_AltRecord):
'''An SV placeholder'''
def __init__(self, type, **kwargs):
super(_SV, self).__init__(type, **kwargs)
def __str__(self):
return "<" + self.type + ">"
def __repr__(self):
return str(self)
def make_calldata_tuple(fields):
""" Return a namedtuple for a given call format """
class CallData(collections.namedtuple('calldata', fields)):
__slots__ = ()
_types = []
_nums = []
def __str__(self):
dat = ", ".join(["%s=%s" % (x, y)
for (x, y) in zip(self._fields, self)])
return "CallData(" + dat + ')'
def __reduce__(self):
args = super(CallData, self).__reduce__()
return make_calldata_tuple, (fields, )
return CallData
|