/usr/lib/python3/dist-packages/specutils/extinction.py is in python3-specutils 0.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Extinction models.
Classes are callables representing the corresponding extinction
function with a fixed R_V. When calling an extinction function multiple
times with the same R_V, it will be faster to create a class instance with
fixed R_V and use that object to evaluate the extinction. See class
documentation for details.
"""
from __future__ import division
from os import path
import numpy as np
from astropy.io import ascii
from astropy.utils import data as apydata
from astropy import units as u
from specutils import cextinction
try:
import scipy
except ImportError:
HAS_SCIPY = False
else:
HAS_SCIPY = True
__all__ = ['extinction_ccm89', 'extinction_od94', 'extinction_gcc09',
'extinction_f99', 'extinction_fm07', 'extinction_wd01',
'extinction_d03', 'extinction', 'reddening',
'ExtinctionF99', 'ExtinctionD03', 'ExtinctionWD01']
def _process_wave(wave):
return wave.to(u.angstrom).flatten()
def _process_inputs(wave, ebv, a_v, r_v):
if (a_v is None) and (ebv is None):
raise ValueError('Must specify either a_v or ebv')
if (a_v is not None) and (ebv is not None):
raise ValueError('Cannot specify both a_v and ebv')
if a_v is None:
a_v = ebv * r_v
scalar = np.isscalar(wave)
wave = np.atleast_1d(wave)
if wave.ndim > 2:
raise ValueError("wave cannot be more than 1-d")
return wave, scalar, a_v
def _check_wave(wave, minwave, maxwave):
if np.any((wave < minwave) | (wave > maxwave)):
raise ValueError('Wavelengths must be between {0:.2f} and {1:.2f} '
'angstroms'.format(minwave, maxwave))
def extinction_ccm89(wave, a_v, r_v=3.1):
"""Cardelli, Clayton, & Mathis (1989) extinction model.
The parameters given in the original paper [1]_ are used.
The function works between 910 A and 3.3 microns, although note the
claimed validity is only for wavelength above 1250 A.
{0}
Notes
-----
In Cardelli, Clayton & Mathis (1989) the mean
R_V-dependent extinction law, is parameterized as
.. math::
<A(\lambda)/A_V> = a(x) + b(x) / R_V
where the coefficients a(x) and b(x) are functions of
wavelength. At a wavelength of approximately 5494.5 angstroms (a
characteristic wavelength for the V band), a(x) = 1 and b(x) = 0,
so that A(5494.5 angstroms) = A_V. This function returns
.. math::
A(\lambda) = A_V (a(x) + b(x) / R_V)
where A_V can either be specified directly or via E(B-V)
(by defintion, A_V = R_V * E(B-V)).
References
----------
.. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
"""
_check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)
res = cextinction.ccm89(_process_wave(wave).value, a_v, r_v)
return res.reshape(wave.shape)
def extinction_od94(wave, a_v, r_v=3.1):
"""O'Donnell (1994) extinction model.
Like Cardelli, Clayton, & Mathis (1989) [1]_ but using the O'Donnell
(1994) [2]_ optical coefficients between 3030 A and 9091 A.
{0}
Notes
-----
This function matches the Goddard IDL astrolib routine CCM_UNRED.
From the documentation for that routine:
1. The CCM curve shows good agreement with the Savage & Mathis (1979)
[3]_ ultraviolet curve shortward of 1400 A, but is probably
preferable between 1200 and 1400 A.
2. Curve is extrapolated between 912 and 1000 A as suggested by
Longo et al. (1989) [4]_
3. Valencic et al. (2004) [5]_ revise the ultraviolet CCM
curve (3.3 -- 8.0 um^-1). But since their revised curve does
not connect smoothly with longer and shorter wavelengths, it is
not included here.
References
----------
.. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
.. [2] O'Donnell, J. E. 1994, ApJ, 422, 158O
.. [3] Savage & Mathis 1979, ARA&A, 17, 73
.. [4] Longo et al. 1989, ApJ, 339,474
.. [5] Valencic et al. 2004, ApJ, 616, 912
"""
_check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)
res = cextinction.od94(_process_wave(wave).value, a_v, r_v)
return res.reshape(wave.shape)
def extinction_gcc09(wave, a_v, r_v=3.1):
"""Gordon, Cartledge, & Clayton (2009) extinction model.
Uses the UV coefficients of Gordon, Cartledge, & Clayton (2009)
[1]_ between 910 A and 3030 A, otherwise the same as the
`extinction_od94` function. Also note that the two do not connect
perfectly: there is a discontinuity at 3030 A. Note that
GCC09 equations 14 and 15 apply to all x>5.9 (the GCC09 paper
mistakenly states they do not apply at x>8; K. Gordon,
priv. comm.).
.. warning :: Note that the Gordon, Cartledge, & Clayton (2009) paper
has incorrect parameters for the 2175 angstrom bump that
have not been corrected here.
{0}
References
----------
.. [1] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320
"""
_check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)
res = cextinction.gcc09(_process_wave(wave).value, a_v, r_v)
return res.reshape(wave.shape)
_f99_xknots = 1.e4 / np.array([np.inf, 26500., 12200., 6000., 5470.,
4670., 4110., 2700., 2600.])
class ExtinctionF99(object):
"""Fitzpatrick (1999) extinction model with fixed R_V.
Parameters
----------
r_v : float
Relation between specific and total extinction, ``a_v = r_v * ebv``.
Examples
--------
Create a callable that gives the extinction law for a given ``r_v``
and use it:
>>> f = ExtinctionF99(3.1)
>>> f(3000., a_v=1.)
1.7993995521481463
"""
def __init__(self, a_v, r_v=3.1):
if not HAS_SCIPY:
raise ImportError('To use this function scipy needs to be installed')
from scipy.interpolate import splmake
self.a_v = a_v
self.r_v = r_v
kknots = cextinction.f99kknots(_f99_xknots, self.r_v)
self._spline = splmake(_f99_xknots, kknots, order=3)
def __call__(self, wave):
if not HAS_SCIPY:
raise ImportError('To use this function scipy needs to be installed')
from scipy.interpolate import spleval
wave_shape = wave.shape
wave = _process_wave(wave)
_check_wave(wave, 909.091* u.angstrom, 6. * u.micron)
res = np.empty_like(wave.__array__(), dtype=np.float64)
# Analytic function in the UV.
uvmask = wave < (2700. * u.angstrom)
if np.any(uvmask):
res[uvmask] = cextinction.f99uv(wave[uvmask].value, self.a_v, self.r_v)
# Spline in the Optical/IR
oirmask = ~uvmask
if np.any(oirmask):
k = spleval(self._spline, 1. / wave[oirmask].to('micron'))
res[oirmask] = self.a_v / self.r_v * (k + self.r_v)
return res.reshape(wave_shape)
def extinction_f99(wave, a_v, r_v=3.1):
"""Fitzpatrick (1999) extinction model.
Fitzpatrick (1999) [1]_ model which relies on the parametrization
of Fitzpatrick & Massa (1990) [2]_ in the UV (below 2700 A) and
spline fitting in the optical and IR. This function is defined
from 910 A to 6 microns, but note the claimed validity goes down
only to 1150 A. The optical spline points are not taken from F99
Table 4, but rather updated versions from E. Fitzpatrick (this
matches the Goddard IDL astrolib routine FM_UNRED).
{0}
References
----------
.. [1] Fitzpatrick, E. L. 1999, PASP, 111, 63
.. [2] Fitzpatrick, E. L. & Massa, D. 1990, ApJS, 72, 163
"""
f = ExtinctionF99(a_v, r_v)
return f(wave)
# fm07 knots for spline
_fm07_r_v = 3.1
_fm07_xknots = np.array([0., 0.25, 0.50, 0.75, 1., 1.e4/5530., 1.e4/4000.,
1.e4/3300., 1.e4/2700., 1.e4/2600.])
_fm07_kknots = cextinction.fm07kknots(_fm07_xknots)
try:
from scipy.interpolate import splmake
_fm07_spline = splmake(_fm07_xknots, _fm07_kknots, order=3)
except ImportError:
pass
def extinction_fm07(wave, a_v):
"""Fitzpatrick & Massa (2007) extinction model for R_V = 3.1.
The Fitzpatrick & Massa (2007) [1]_ model, which has a slightly
different functional form from that of Fitzpatrick (1999) [3]_
(`extinction_f99`). Fitzpatrick & Massa (2007) claim it is
preferable, although it is unclear if signficantly so (Gordon et
al. 2009 [2]_). Defined from 910 A to 6 microns.
.. note :: This model is not R_V dependent.
{0}
References
----------
.. [1] Fitzpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320
.. [2] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320
.. [3] Fitzpatrick, E. L. 1999, PASP, 111, 63
"""
if not HAS_SCIPY:
raise ImportError('To use this function scipy needs to be installed')
from scipy.interpolate import spleval
wave_shape = wave.shape
wave = _process_wave(wave)
_check_wave(wave, 909.091 * u.angstrom, 6.0 * u.micron)
res = np.empty_like(wave.__array__(), dtype=np.float64)
# Simple analytic function in the UV
uvmask = wave < (2700. * u.angstrom)
if np.any(uvmask):
res[uvmask] = cextinction.fm07uv(wave[uvmask].value, a_v)
# Spline in the Optical/IR
oirmask = ~uvmask
if np.any(oirmask):
k = spleval(_fm07_spline, (1. / wave[oirmask].to('micron')).value)
res[oirmask] = a_v / _fm07_r_v * (k + _fm07_r_v)
return res.reshape(wave_shape)
prefix = path.join('data', 'extinction_models', 'kext_albedo_WD_MW')
_wd01_fnames = {'3.1': prefix + '_3.1B_60.txt',
'4.0': prefix + '_4.0B_40.txt',
'5.5': prefix + '_5.5B_30.txt'}
_d03_fnames = {'3.1': prefix + '_3.1A_60_D03_all.txt',
'4.0': prefix + '_4.0A_40_D03_all.txt',
'5.5': prefix + '_5.5A_30_D03_all.txt'}
del prefix
class ExtinctionWD01(object):
"""Weingartner and Draine (2001) extinction model with fixed R_V.
Parameters
----------
r_v : float
Relation between specific and total extinction, ``a_v = r_v * ebv``.
Examples
--------
Create a callable that gives the extinction law for a given ``r_v``
and use it:
>>> f = ExtinctionWD01(3.1)
>>> f(3000., a_v=1.)
Arrays are also accepted and ``ebv`` can be specified instead of ``a_v``:
>>> f([3000., 4000.], ebv=1./3.1)
"""
def __init__(self, a_v, r_v):
if not HAS_SCIPY:
raise ImportError('To use this function scipy needs to be installed')
from scipy.interpolate import interp1d
self.a_v = a_v
self.r_v = r_v
fname_key = [item for item in _wd01_fnames.keys() if np.isclose(
float(item), self.r_v)]
if len(fname_key) == 0:
raise ValueError("model only defined for r_v in [3.1, 4.0, 5.5]")
elif len(fname_key) == 1:
fname = _wd01_fnames[fname_key[0]]
else:
raise ValueError('The given float {0} matches multiple available'
' r_vs [3.1, 4.0, 5.5] - unexpected code error')
fname = apydata.get_pkg_data_filename(fname)
data = ascii.read(fname, Reader=ascii.FixedWidth, data_start=51,
names=['wave', 'albedo', 'avg_cos', 'C_ext',
'K_abs'],
col_starts=[0, 10, 18, 25, 35],
col_ends=[9, 17, 24, 34, 42], guess=False)
# Reverse entries so that they ascend in x (needed for the spline).
waveknots = np.asarray(data['wave'])[::-1]
cknots = np.asarray(data['C_ext'])[::-1]
xknots = 1. / waveknots # Values in inverse microns.
# Create a spline just to get normalization.
spline = interp1d(xknots, cknots)
cknots = cknots / spline(1.e4 / 5495.) # Normalize cknots.
self._spline = interp1d(xknots, cknots)
def __call__(self, wave):
wave_shape = wave.shape
wave = _process_wave(wave)
x = (1 / wave).to('1/micron')
res = self.a_v * self._spline(x.value)
return res.reshape(wave_shape)
def extinction_wd01(wave, a_v, r_v=3.1):
"""Weingartner and Draine (2001) extinction model.
The Weingartner & Draine (2001) [1]_ dust model. This model is a
calculation of the interstellar extinction using a dust model of
carbonaceous grains and amorphous silicate grains. The
carbonaceous grains are like PAHs when small and like graphite
when large. This model is evaluated at discrete wavelengths and
interpolated between these wavelengths. Grid goes from 1 A to 1000
microns. The model has been calculated for three different grain
size distributions which produce interstellar exinctions that look
like 'ccm89' at Rv = 3.1, Rv = 4.0 and Rv = 5.5. No interpolation
to other Rv values is performed, so this model can be evaluated
only for these values.
The dust model gives the extinction per H nucleon. For
consistency with other extinction laws we normalize this
extinction law so that it is equal to 1.0 at 5495 angstroms.
.. note :: Model is not an analytic function of R_V. Only ``r_v``
values of 3.1, 4.0 and 5.5 are accepted.
.. note :: This function reads a table from a file on disk on each call.
For repeated calls with the same ``r_v``, it will be far faster
to use the class-based interface `ExtinctionWD01`.
{0}
See Also
--------
ExtinctionWD01
References
----------
.. [1] Weingartner, J.C. & Draine, B.T. 2001, ApJ, 548, 296
"""
f = ExtinctionWD01(a_v, r_v)
return f(wave)
class ExtinctionD03(ExtinctionWD01):
"""Draine (2003) extinction model with fixed R_V.
Parameters
----------
r_v : float
Relation between specific and total extinction, ``a_v = r_v * ebv``.
Examples
--------
Create a callable that gives the extinction law for a given ``r_v``
and use it:
>>> f = ExtinctionWD01(3.1)
>>> f(3000., a_v=1.)
Arrays are also accepted and ``ebv`` can be specified instead of ``a_v``:
>>> f([3000., 4000.], ebv=1./3.1)
"""
def __init__(self, a_v, r_v):
if not HAS_SCIPY:
raise ImportError('To use this function scipy needs to be installed')
from scipy.interpolate import interp1d
super(ExtinctionD03, self).__init__(a_v, r_v)
fname_key = [item for item in _wd01_fnames.keys() if np.isclose(
float(item), self.r_v)]
if len(fname_key) == 0:
raise ValueError("model only defined for r_v in [3.1, 4.0, 5.5]")
elif len(fname_key) == 1:
fname = _d03_fnames[fname_key[0]]
else:
raise ValueError('The given float {0} matches multiple available'
' r_vs [3.1, 4.0, 5.5] - unexpected code error')
fname = apydata.get_pkg_data_filename(fname)
data = ascii.read(fname, Reader=ascii.FixedWidth, data_start=67,
names=['wave', 'albedo', 'avg_cos', 'C_ext',
'K_abs', 'avg_cos_sq', 'comment'],
col_starts=[0, 12, 20, 27, 37, 47, 55],
col_ends=[11, 19, 26, 36, 46, 54, 80], guess=False)
xknots = 1. / np.asarray(data['wave'])
cknots = np.asarray(data['C_ext'])
# Create a spline just to get normalization.
spline = interp1d(xknots, cknots)
cknots = cknots / spline((1. / (5495. * u.angstrom)).to('1/micron').value) # Normalize cknots.
self._spline = interp1d(xknots, cknots)
def extinction_d03(wave, a_v, r_v=3.1):
"""Draine (2003) extinction model.
The Draine (2003) [2]_ update to WD01 [1]_ where the
carbon/PAH abundances relative to 'wd01' have been reduced by a
factor of 0.93.
The dust model gives the extinction per H nucleon. For
consistency with other extinction laws we normalize this
extinction law so that it is equal to 1.0 at 5495 angstroms.
.. note :: Model is not an analytic function of R_V. Only ``r_v``
values of 3.1, 4.0 and 5.5 are accepted.
{0}
References
----------
.. [1] Weingartner, J.C. & Draine, B.T. 2001, ApJ, 548, 296
.. [2] Draine, B.T. 2003, ARA&A, 41, 241
"""
f = ExtinctionD03(a_v, r_v)
return f(wave)
_extinction_models = {'ccm89': extinction_ccm89,
'od94': extinction_od94,
'gcc09': extinction_gcc09,
'f99': extinction_f99,
'fm07': extinction_fm07,
'wd01': extinction_wd01,
'd03': extinction_d03}
def extinction(wave, a_v, r_v=3.1, model='od94'):
"""Generic interface for all extinction model functions.
Parameters
----------
wave : float or list_like
Wavelength(s) in angstroms.
a_v : float
Total V band extinction A(V), in magnitudes. A(V) = R_V * E(B-V).
r_v : float, optional
R_V parameter. Default is the standard Milky Way average of 3.1.
model : {'ccm89', 'od94', 'gcc09', 'f99', 'fm07', 'wd01', d03'}, optional
Use function ``extinction_[model]``. E.g., for 'ccm89', the function
``extinction_ccm89`` is used.
Returns
-------
extinction : float or `~numpy.ndarray`
Extinction in magnitudes at given wavelengths.
See Also
--------
extinction_ccm89
extinction_od94
extinction_gcc09
extinction_f99
extinction_fm07
extinction_wd01
extinction_d03
reddening
Notes
-----
**Visual comparison of models**
The plot below shows a comparison of the models for
``r_v=3.1``. The shaded regions show the limits of claimed
validity for the f99 model (> 1150 A) and the ccm89/od94 models (>
1250 A). The vertical dotted lines indicate transition wavelengths in
the models (3030.3 A and 9090.9 A for ccm89, od94 and gcc09;
2700. A for f99, fm07).
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from specutils.extinction import extinction
models = ['ccm89', 'od94', 'gcc09', 'f99', 'fm07','wd01','d03']
wave = np.logspace(np.log10(910.), np.log10(30000.), 2000)
a_lambda = {model: extinction(wave, a_v=1., model=model)
for model in models}
fig = plt.figure(figsize=(8.5, 6.))
ax = plt.axes()
for model in models:
plt.plot(wave, a_lambda[model], label=model)
plt.axvline(x=2700., ls=':', c='k')
plt.axvline(x=3030.3030, ls=':', c='k')
plt.axvline(x=9090.9091, ls=':', c='k')
plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)
plt.text(0.67, 0.95, '$R_V = 3.1$', transform=ax.transAxes, va='top',
size='x-large')
plt.ylabel('Extinction ($A(\lambda)$ / $A_V$)')
plt.legend()
plt.setp(ax.get_xticklabels(), visible=False)
divider = make_axes_locatable(ax)
axresid = divider.append_axes("bottom", size=2.0, pad=0.2, sharex=ax)
for model in models:
plt.plot(wave, a_lambda[model] - a_lambda['f99'])
plt.axvline(x=2700., ls=':', c='k')
plt.axvline(x=3030.3030, ls=':', c='k')
plt.axvline(x=9090.9091, ls=':', c='k')
plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)
plt.xlim(wave[0], wave[-1])
plt.ylim(ymin=-0.4,ymax=0.4)
plt.ylabel('residual from f99')
plt.xlabel('Wavelength ($\AA$)')
ax.set_xscale('log')
axresid.set_xscale('log')
plt.tight_layout()
fig.show()
Examples
--------
>>> wave = [2000., 2500., 3000.]
>>> extinction(wave, a_v=1., r_v=3.1, model='f99')
array([ 2.76225609, 2.27590036, 1.79939955])
The extinction scales linearly with ``a_v``. This means
that when calculating extinction for multiple values of ``a_v``, one can compute extinction ahead of time for a given set of
wavelengths and then scale by ``a_v`` or ``ebv`` later. For example:
>>> a_lambda_over_a_v = extinction(wave, a_v=1.)
>>> a_v = 0.5
>>> a_lambda = a_v * a_lambda_over_a_v
"""
model = model.lower()
if model not in _extinction_models:
raise ValueError('unknown model: {0}'.format(model))
if model == 'fm07':
if not np.isclose(r_v, 3.1):
raise ValueError('r_v must be 3.1 for fm07 model')
return _extinction_models[model](wave, a_v=a_v)
else:
return _extinction_models[model](wave, a_v=a_v, r_v=r_v)
def reddening(wave, a_v, r_v=3.1, model='od94'):
"""Inverse of flux transmission fraction at given wavelength(s).
Parameters
----------
wave : float or list_like
Wavelength(s) in angstroms at which to evaluate the reddening.
a_v : float
Total V band extinction, in magnitudes. A(V) = R_V * E(B-V).
r_v : float, optional
R_V parameter. Default is the standard Milky Way average of 3.1.
model : {'ccm89', 'od94', 'gcc09', 'f99', 'fm07'}, optional
Returns
-------
reddening : float or `~numpy.ndarray`
Inverse of flux transmission fraction, equivalent to
``10**(0.4 * extinction(wave))``. To deredden spectra,
multiply flux values by these value(s). To redden spectra, divide
flux values by these value(s).
See Also
--------
extinction
"""
return 10**(0.4 * extinction(wave, a_v, r_v=r_v, model=model))
_func_doc = """
Parameters
----------
wave : float or list_like
Wavelength(s) in angstroms.
a_v : float
A(V) total V band extinction,
in magnitudes.
r_v : float, optional
R_V parameter. Default is the standard Milky Way average of 3.1.
Returns
-------
extinction : `~numpy.ndarray`
Extinction in magnitudes at given wavelengths.
"""
for func in [extinction_ccm89, extinction_od94, extinction_gcc09,
extinction_f99, extinction_fm07, extinction_wd01,
extinction_d03]:
func.__doc__ = func.__doc__.format(_func_doc)
|