/usr/share/qtiplot/qtiUtil.py is in qtiplot 0.9.8.9-15+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | ############################################################################
# #
# File : qtiUtil.py #
# Project : QtiPlot #
# Description : Some Python utilities useful when doing data #
# analysis with QtiPlot #
# Copyright : (C) 2006 Knut Franke (knut.franke*gmx.de) #
# (C) 2006-2010 Ion Vasilief (ion_vasilief*yahoo.fr)#
# (replace * with @ in the email address) #
# #
############################################################################
# #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation; either version 2 of the License, or #
# (at your option) any later version. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with this program; if not, write to the Free Software #
# Foundation, Inc., 51 Franklin Street, Fifth Floor, #
# Boston, MA 02110-1301 USA #
# #
############################################################################
"""
Some classes and functions that are particularly useful when doing calculations in QtiPlot;
maybe also outside of it.
"""
import math, qti
class value:
"""
Scalar variable with associated error estimate.
This class provides an easy way to do calculations with values subject to (experimental) errors.
It is particularly useful for getting a quick idea of how where the main sources of uncertainty
are in your calculations and how good the result is.
However, if you need to do accurate hypthesis tests or have a precise range of possible values
at a given clearance level, e.g. for a publication, you will probably want to do an analytical
analysis of your final calculation and its error propagation. At the very least, you should be
aware of the following shortcomings of this class:
- it does not handle covariances
- it does not handle asymmetric error ranges
- it depends exclusively on linearized operations;
large errors will be propagated incorrectly in divisions, powers and roots
The standard constructor is
value(val, sigma)
where val is the actual value and sigma is the error estimate (standard deviation). You can also
construct a value from a QtiPlot table, like this:
value(table, valcol, errcol, row)
where table is a qti.Table instance, valcol the column containing the actual value, errcol the column
containing the error estimate and row, if you haven't guessed this, the row from which to read the values.
"""
def __init__(self,val,var=None,sigma=True,row=None):
if val.__class__==qti.Table:
self.val,self.var = val.cell(var,row),val.cell(sigma,row)**2
elif hasattr(val, "inherits") and val.inherits("Fit"):
self.val = val.results()[var-1]
covy = val.covarianceMatrix("tmp9999")
self.var = covy.cell(var, var)
covy.close()
elif var == None:
self.val,self.var = val,val
elif sigma:
self.val,self.var = val,var**2
else:
self.val,self.var = val,abs(var)
# numeric protocol
def __abs__(self): return value(abs(self.val), self.var, False)
def __neg__(self): return value(-self.val, self.var, False)
def __add__(self,o):
if o.__class__==value:
return value(self.val+o.val, self.var+o.var, False)
else:
return value(self.val+float(o), self.var, False)
def __radd__(self,o): return self.__add__(o)
def __sub__(self,o):
if o.__class__==value:
return value(self.val-o.val,self.var+o.var, False)
else:
return value(self.val-float(o),self.var, False)
def __rsub__(self,o): return -self.__sub__(o)
def __mul__(self,o):
if o.__class__==value:
return value(self.val*o.val,self.var*o.val**2+o.var*self.val**2, False)
else:
return value(self.val*float(o),self.var*float(o)**2, False)
def __rmul__(self,o): return self.__mul__(o)
def __div__(self,o):
if o.__class__==value:
return value(self.val/o.val, self.var/o.val**2+o.var*self.val**2/o.val**4, False)
else:
return value(self.val/float(o), self.var/float(o)**2, False)
def __rdiv__(self,o):
return value(float(o)/self.val, self.var*float(o)**2/self.val**4, False)
def __pow__(self,o):
if o.__class__==value:
return value(self.val**o.val, self.var*o.val**2*self.val**(2*(o.val-1))+o.var*math.ln(self.val)*self.val**o.val, False)
else:
return value(self.val**float(o), self.var*float(o)**2*self.val**(2*(float(o)-1)), False)
def __rpow__(self,o):
return value(float(o)**self.val, self.var*math.ln(o)*float(o)**self.val, False)
# comparison protocol
def __lt__(self,o):
if o.__class__==value: return self.val < o.val
else: return self.val < float(o)
def __le__(self,o):
if o.__class__==value: return self.val <= o.val
else: return self.val <= float(o)
def __eq__(self,o):
if o.__class__==value: return self.val == o.val
else: return self.val == float(o)
def __ge__(self,o):
if o.__class__==value: return self.val >= o.val
else: return self.val >= float(o)
def __gt__(self,o):
if o.__class__==value: return self.val > o.val
else: return self.val > float(o)
# convenience functions
def sigma(self):
"compute the error estimate (standard deviation)"
return math.sqrt(self.var)
def __str__(self):
return str(self.val) + " +/- " + str(self.sigma())
def sqrt(self):
"error estimate aware square root function"
if self.val==0: return value(0, self.var, False)
return value(math.sqrt(self.val), self.var/(4*self.val), False)
def cartesic(r, phi):
"Convert polar coordinates to cartesic ones. Arguments have to instances of class value."
x = r*value(math.cos(phi.val), (math.sin(phi.val))**2*phi.var, False)
y = r*value(math.sin(phi.val), (math.cos(phi.val))**2*phi.var, False)
return (x, y)
def polar(x, y):
"Convert (2D) cartesic coordinates to polar ones. Arguments have to instances of class value."
r = (x**2+y**2).sqrt()
yx = y/x
phi = value(math.atan2(y.val, x.val), yx.var/(1+yx.val**2)**2, False)
return (r, phi)
def lookup(tab, col, txt):
"""
lookup(tab, col, txt):
search column col of QtiPlot table tab for a cell with text content txt,
returning the row of the first match; None on failure.
"""
for i in range(1,tab.numRows()+1):
if tab.text(col, i) == txt: return i
class vec4:
"""
A relativistic 4-vector.
Computations assume a diag(1, -1, -1, -1) metric.
Components may be any numbers that can either be cast to float or provide a sqrt() method.
"""
def __init__(self, one, x=None, y=0, z=0):
self.t, self.x, self.y, self.z = 0,0,0,0
try: self.t, self.x, self.y, self.z = one[0], one[1], one[2], one[3]
except IndexError: pass
except (AttributeError, TypeError):
try: self.t, self.x, self.y, self.z = one,x[0],x[1],x[2]
except IndexError: self.t, self.x, self.y, self.z = one,x[0],x[1],0
except (AttributeError,TypeError): self.t, self.x, self.y, self.z = one,x,y,z
def __add__(self, o):
return vec4(self.t+o.t, self.x+o.x, self.y+o.y, self.z+o.z)
def __sub__(self, o):
return vec4(self.t-o.t, self.x-o.x, self.y-o.y, self.z-o.z)
def __mul__(self, o):
return self.t*o.t-self.x*o.x-self.y*o.y-self.z*o.z
def __str__(self):
return "(%s; %s, %s, %s)" % (self.t, self.x, self.y, self.z)
def __abs__(self):
s = self*self
if s < 0:
if (hasattr(s, "sqrt")): return -(-s).sqrt()
else: return -math.sqrt(-s)
else:
if hasattr(s, "sqrt"): return s.sqrt()
else: return math.sqrt(s)
def abs3(self):
"compute the absolute value of the spatial part of this 4-vector"
s = self.x**2+self.y**2+self.z**2
if hasattr(s, "sqrt"): return s.sqrt()
else: return math.sqrt(s)
def gamma(self):
"assuming this is an energy-momentum four-vector, return the corresponding gamma factor"
return self.t/abs(self)
def beta(self):
"assuming this is an energy-momentum four-vector, return the corresponding beta factor"
s = 1-(abs(self)/self.t)**2
if hasattr(s, "sqrt"): return s.sqrt()
else: return math.sqrt(s)
def betagamma(self):
"compute self.beta()*self.gamma() more efficiently"
s = (self.t/abs(self))**2-1
if hasattr(s, "sqrt"): return s.sqrt()
else: return math.sqrt(s)
def exportTableToTeX(t, filename=None):
"""
exportToTeX(table, filename=None):
Export table as TeX-tabular to filename. If filename==None, popup a file selection dialog.
"""
from PyQt4.QtGui import QFileDialog
if not filename:
filename=QFileDialog.getSaveFileName(qti.app,"QtiPlot - Export TeX table","","All files *;;TeX documents (*.tex *.TEX);;");
f=open(filename,'w')
f.write('\\begin{tabular}{|' + 'c|'*t.numCols() + '}\\hline\n')
for col in range(1,t.numCols()):
f.write(t.colName(col) + ' & ')
f.write(t.colName(t.numCols()) + ' \\\\\\hline\n')
for row in range(1,t.numRows()+1):
val = False
for col in range(1,t.numCols()+1):
if t.text(col,row) != "": val = True
if val:
for col in range(1,t.numCols()):
f.write(t.text(col,row) + ' & ')
f.write(t.text(t.numCols(),row) + ' \\\\\n')
f.write('\\hline\n\\end{tabular}\n')
f.close()
def exportAllTablesToTeX(folder, dir, recurs=True):
for w in folder.windows():
if w.isA("Table"): exportTableToTeX(w, dir+w.name()+".tex")
if recurs:
for f in folder.folders():
exportAllTablesToTeX(f, dir, True)
global factor
def factor(n):
"Calculates factorial"
f = 1
while (n > 0):
f = f * n
n = n - 1
return f
qti.mathFunctions["factor"] = factor
global derivative
def derivative(yCol, xCol, row, table = 0):
"derivative(yCol, xCol, row, table = 0):\n\nCalculates the derivative of column yCol with respect to column xCol in table. If not specified table = self."
if (table == 0):
table = qti.app.currentTable()
d1 = (table.cell(yCol, row+1) - table.cell(yCol, row))/(table.cell(xCol, row+1) - table.cell(xCol, row))
d2 = (table.cell(yCol, row) - table.cell(yCol, row-1))/(table.cell(xCol, row) - table.cell(xCol, row-1))
return 0.5*(d1 + d2)
qti.mathFunctions["derivative"] = derivative
|