/usr/share/slsh/local-packages/vector.sl is in slang-xfig 0.2.0~.35-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | % This routine implements some 3-vector operations.
% Copyright (c) 2004-2008 John E. Davis
% You may distribute this file under the terms the GNU General Public
% License. See the file COPYING for more information.
%
% Version 0.1.0
if (0 == is_defined ("Vector_Type")) typedef struct
{
x,y,z
}
Vector_Type;
define vector (x,y,z)
{
variable v = @Vector_Type;
if (__is_numeric (x) != 2)
x = typecast (x, Double_Type);
if (__is_numeric (y) != 2)
y = typecast (y, Double_Type);
if (__is_numeric (z) != 2)
z = typecast (z, Double_Type);
v.x = x;
v.y = y;
v.z = z;
return v;
}
define dotprod (a,b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
define crossprod (a,b)
{
variable ax=a.x,ay=a.y,az=a.z,bx=b.x,by=b.y,bz=b.z;
return vector (ay*bz-by*az, az*bx-bz*ax, ax*by-bx*ay);
}
define vector_sqr (v)
{
return dotprod (v,v);
}
define vector_norm (v)
{
return sqrt (v.x^2 + v.y^2 + v.z^2);
%return sqrt (vector_sqr (v));
}
define normalize_vector (v)
{
variable len = sqrt (v.x^2 + v.y^2 + v.z^2);
v.x /= len;
v.y /= len;
v.z /= len;
}
define unit_vector (v)
{
v = @v; % ok if normalize_vector creates new fields
normalize_vector (v);
return v;
}
define vector_sum (a,b)
{
variable c = @Vector_Type;
c.x = a.x+b.x; c.y = a.y+b.y; c.z = a.z+b.z;
return c;
}
define vector_a_plus_bt (a, b, t)
{
variable c = @Vector_Type;
c.x = a.x+t*b.x;
c.y = a.y+t*b.y;
c.z = a.z+t*b.z;
return c;
}
define vector_diff (a,b)
{
variable c = @Vector_Type;
c.x = a.x-b.x; c.y = a.y-b.y; c.z = a.z-b.z;
return c;
}
define vector_mul (a, v)
{
variable c = @Vector_Type;
c.x = a*v.x; c.y = a*v.y; c.z = a*v.z;
return c;
}
private define vector_times_scalar (v, a)
{
return vector_mul (a, v);
}
private define vector_eqs (a, b)
{
return (a.x == b.x) and (a.y == b.y) and (a.z == b.z);
}
private define vector_neqs (a, b)
{
return not vector_eqs (a, b);
}
% returns X.x*e1 + X.y*e2 + X.z*e3
define vector_change_basis (X, e1, e2, e3)
{
return vector_sum (vector_mul (X.x, e1),
vector_sum (vector_mul(X.y, e2), vector_mul(X.z, e3)));
}
% Rotate p about n by angle theta.
define vector_rotate (p, n, theta)
{
variable pn = dotprod (p, n);
variable c = cos (theta);
return vector_sum (vector_mul (c,p),
vector_sum (vector_mul (pn*(1.0-c),n),
vector_mul (sin(theta), crossprod(n,p))));
}
% Given an orthonormal basis x1_hat, y1_hat, and x1_hat cross y1_hat,
% find a rotation axis and angle that will produce this basis
define vector_get_transformation (x1_hat, x2_hat)
{
variable x3_hat = crossprod (x1_hat, x2_hat);
variable a1, a2, a3;
variable b1, b2, b3;
variable c1, c2, c3;
a1 = x1_hat.x; % m11
a2 = x2_hat.y; % m22
a3 = x3_hat.z; % m33
b1 = x2_hat.z; % m23
b2 = x3_hat.x; % m31
b3 = x1_hat.y; % m12
c1 = x3_hat.y; % m32
c2 = x1_hat.z; % m13
c3 = x2_hat.x; % m21
% Matrix is:
%
% [a1 b3 c2]
% [c3 a2 b1]
% [b2 c1 a3]
%
variable cos_theta = 0.5*(a1+a2+a3-1.0);
variable sin_theta = sqrt (1.0 - cos_theta*cos_theta);
if (sin_theta < 1e-12)
return vector (0, 0, 1), 0.0;
variable den = 2.0*sin_theta;
return vector ((b1-c1)/den, (b2-c2)/den, (b3-c3)/den), asin(sin_theta);
}
define vector_chs (a)
{
variable v = @Vector_Type;
v.x = -a.x;
v.y = -a.y;
v.z = -a.z;
return v;
}
#ifexists __add_unary
% Operator overloading
__add_unary ("sqr", Double_Type, &vector_sqr, Vector_Type);
__add_unary ("abs", Double_Type, &vector_norm, Vector_Type);
__add_unary ("-", Vector_Type, &vector_chs, Vector_Type);
__add_binary ("+", Vector_Type, &vector_sum, Vector_Type, Vector_Type);
__add_binary ("-", Vector_Type, &vector_diff, Vector_Type, Vector_Type);
__add_binary ("*", Double_Type, &dotprod, Vector_Type, Vector_Type);
%__add_binary ("*", Vector_Type, &vector_mul, Array_Type, Vector_Type);
__add_binary ("*", Vector_Type, &vector_mul, Any_Type, Vector_Type);
__add_binary ("*", Vector_Type, &vector_times_scalar, Vector_Type, Any_Type);
__add_binary ("^", Vector_Type, &crossprod, Vector_Type, Vector_Type);
__add_binary ("==", Char_Type, &vector_eqs, Vector_Type, Vector_Type);
__add_binary ("!=", Char_Type, &vector_neqs, Vector_Type, Vector_Type);
#endif
|