This file is indexed.

/usr/lib/swi-prolog/library/oset.pl is in swi-prolog-nox 7.2.3+dfsg-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% Filename: oset.pl
% Author--: Jon Jagger,  J.R.Jagger@shu.ac.uk
% Created-: 05/03/93
% Version-: 1.0
% Updates-: Mon Oct 21 12:39:41 1996
%	    Fix in oset_int/3 by Robert van Engelen.
% Notes---: This file provides some basic set manipulation
%           predicates. The representation of the sets is
%           assumed to be ordered with no duplication. You
%           can create an ordered set from a free form list
%           by using the sort/2 predicate. The advantage of
%           using an ordered representation is that the algorithms
%           are order sum of the sizes of the operands, rather than
%           product of the sizes of the operands.
%
%           I have tried to make all the predicates as efficient as
%           possible with respect to first argument indexing, and tail
%           clause determinacy.
%
%           These routines are provided as is, with no guarantees.
%           They have undergone minimal testing.

:- module(oset, [  oset_is/1,
                    oset_union/3,
                    oset_int/3,
                    oset_diff/3,
                    oset_dint/2,
                    oset_dunion/2,
                    oset_addel/3,
                    oset_delel/3,
                    oset_power/2
                 ]).


/** <module> Ordered set manipulation

This library defines set operations on sets represented as ordered
lists.

@author	Jon Jagger
@deprecated Use the de-facto library ordsets.pl
*/


%% oset_is(+OSet)
%   check that OSet in correct format (standard order)

oset_is(-) :- !, fail.    % var filter
oset_is([]).
oset_is([H|T]) :-
    oset_is(T, H).

oset_is(-, _) :- !, fail.  % var filter
oset_is([], _H).
oset_is([H|T], H0) :-
    H0 @< H,               % use standard order
    oset_is(T, H).



%% oset_union(+OSet1, +OSet2, -Union).

oset_union([], Union, Union).
oset_union([H1|T1], L2, Union) :-
    union2(L2, H1, T1, Union).

union2([], H1, T1, [H1|T1]).
union2([H2|T2], H1, T1, Union) :-
    compare(Order, H1, H2),
    union3(Order, H1, T1, H2, T2, Union).

union3(<, H1, T1,  H2, T2, [H1|Union]) :-
    union2(T1, H2, T2, Union).
union3(=, H1, T1, _H2, T2, [H1|Union]) :-
    oset_union(T1, T2, Union).
union3(>, H1, T1,  H2, T2, [H2|Union]) :-
    union2(T2, H1, T1, Union).


%% oset_int(+OSet1, +OSet2, -Int)
%   ordered set intersection

oset_int([], _Int, []).
oset_int([H1|T1], L2, Int) :-
    isect2(L2, H1, T1, Int).

isect2([], _H1, _T1, []).
isect2([H2|T2], H1, T1, Int) :-
    compare(Order, H1, H2),
    isect3(Order, H1, T1, H2, T2, Int).

isect3(<, _H1, T1,  H2, T2, Int) :-
    isect2(T1, H2, T2, Int).
isect3(=, H1, T1, _H2, T2, [H1|Int]) :-
    oset_int(T1, T2, Int).
isect3(>, H1, T1,  _H2, T2, Int) :-
    isect2(T2, H1, T1, Int).


%% oset_diff(+InOSet, +NotInOSet, -Diff)
%   ordered set difference

oset_diff([], _Not, []).
oset_diff([H1|T1], L2, Diff) :-
    diff21(L2, H1, T1, Diff).

diff21([], H1, T1, [H1|T1]).
diff21([H2|T2], H1, T1, Diff) :-
    compare(Order, H1, H2),
    diff3(Order, H1, T1, H2, T2, Diff).

diff12([], _H2, _T2, []).
diff12([H1|T1], H2, T2, Diff) :-
    compare(Order, H1, H2),
    diff3(Order, H1, T1, H2, T2, Diff).

diff3(<,  H1, T1,  H2, T2, [H1|Diff]) :-
    diff12(T1, H2, T2, Diff).
diff3(=, _H1, T1, _H2, T2, Diff) :-
    oset_diff(T1, T2, Diff).
diff3(>,  H1, T1, _H2, T2, Diff) :-
    diff21(T2, H1, T1, Diff).


%% oset_dunion(+SetofSets, -DUnion)
%   distributed union

oset_dunion([], []).
oset_dunion([H|T], DUnion) :-
    oset_dunion(T, H, DUnion).

oset_dunion([], DUnion, DUnion).
oset_dunion([H|T], DUnion0, DUnion) :-
    oset_union(H, DUnion0, DUnion1),
    oset_dunion(T, DUnion1, DUnion).


%% oset_dint(+SetofSets, -DInt)
%   distributed intersection

oset_dint([], []).
oset_dint([H|T], DInt) :-
    dint(T, H, DInt).

dint([], DInt, DInt).
dint([H|T], DInt0, DInt) :-
    oset_int(H, DInt0, DInt1),
    dint(T, DInt1, DInt).


%%	oset_power(+Set, -PSet)
%
%	True when PSet is the powerset of Set. That is, Pset is a set of
%	all subsets of Set, where each subset is a proper ordered set.

oset_power(S, PSet) :-
	reverse(S, R),
	pset(R, [[]], PSet0),
	sort(PSet0, PSet).

% The powerset of a set  is  the  powerset   of  a  set  of one smaller,
% together with the set of one  smaller   where  each subset is extended
% with the new element.  Note that this produces the elements of the set
% in reverse order.  Hence the reverse in oset_power/2.

pset([], PSet, PSet).
pset([H|T], PSet0, PSet) :-
	happ(PSet0, H, PSet1),
	pset(T, PSet1, PSet).

happ([], _, []).
happ([S|Ss], H, [[H|S],S|Rest]) :-
	happ(Ss, H, Rest).



%% oset_addel(+Set, +El, -Add)
%   ordered set element addition

oset_addel([], El, [El]).
oset_addel([H|T], El, Add) :-
    compare(Order, H, El),
    addel(Order, H, T, El, Add).

addel(<, H, T,  El, [H|Add]) :-
    oset_addel(T, El, Add).
addel(=, H, T, _El, [H|T]).
addel(>, H, T,  El, [El,H|T]).


%% oset_delel(+Set, +El, -Del)
%   ordered set element deletion

oset_delel([], _El, []).
oset_delel([H|T], El, Del) :-
    compare(Order, H, El),
    delel(Order, H, T, El, Del).

delel(<,  H, T,  El, [H|Del]) :-
    oset_delel(T, El, Del).
delel(=, _H, T, _El, T).
delel(>,  H, T, _El, [H|T]).