This file is indexed.

/usr/share/Yap/clpbn/bp.yap is in yap 6.2.2-6+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/***********************************

  Belief Propagation in CLP(BN)

  This should connect to C-code.
 
*********************************/

:- module(clpbn_bp, [bp/3,
        check_if_bp_done/1,
        init_bp_solver/4,
        run_bp_solver/3]).

:- attribute all_diffs/1.

:- use_module(library(ordsets),
    [ord_union/3,
     ord_member/2]).

:- use_module(library('clpbn/matrix_cpt_utils'),
	      [reorder_CPT/5]).

:- use_module(library('clpbn/dists'),
          [
           dist/4,
           get_dist_domain/2,
           get_dist_params/2]).

:- use_module(library('clpbn/utils'), [
    clpbn_not_var_member/2]).

:- use_module(library('clpbn/display'), [
    clpbn_bind_vals/3]).

:- use_module(library('clpbn/connected'),
          [
           init_influences/3,
           influences/5
          ]).

:- use_module(library(lists),
          [
           append/3
          ]).

:- use_module(library('clpbn/aggregates'),
          [check_for_agg_vars/2]).


check_if_bp_done(_Var).

%
% implementation of belief propagation
%
% A1=+QueryVars -> sets of independent marginalization variables
% A2=*AllVars -> list
% A3=-Output -> output probabilities
%
%
% Other important variables:
%
% State0 initialized graph, is used to pass data from initialization 
% to query solving (eg, State might be the JT and be used to run
% different queries). 
%
% Process
%
bp([[]],_,_) :- !.
bp([QueryVars],AllVars,Output) :-
writeln(QueryVars:AllVars:Output),
    init_bp_solver([QueryVars], AllVars, Output, State),
writeln(State),
    % variable elimination proper
    run_bp_solver([], [LPs], State),
    % bind Probs back to variables so that they can be output.
    clpbn_bind_vals([QueryVars],[LPs],Output).

% initialise necessary data for query solver
init_bp_solver(Qs, AllVars, _, graph(LVis)) :-
    % replace average, max, min and friends
    % by binary nodes.
    check_for_agg_vars(AllVars, UnFoldedVars),
writeln(AllVars:UnFoldedVars),
    % replace the variables reachable from G
    % Tables0 will have the full data on each variable
    init_influences(UnfoldedVars, G, RG),
writeln(G:RG),
    init_bp_solver_for_questions(Qs, G, RG, _, LVis).

init_bp_solver_for_questions([], _, _, [], []).
init_bp_solver_for_questions([Vs|MVs], G, RG, [NVs|MNVs0], [NVs|LVis]) :-
    % find variables connectd to Vs
%    influences(Vs, _, NVs0, G, RG),
     G = RG,
    sort(NVs0, NVs),
%clpbn_gviz:clpbn2gviz(user_error, test, NVs, Vs),
    init_bp_solver_for_questions(MVs, G, RG, MNVs0, LVis).

% use a findall to recover space without needing for GC
run_bp_solver(LVs, LPs, graph(LNVs)) :-
    findall(Ps, solve_bp(LVs, LNVs, Ps), LPs).

solve_bp([LVs|_], [NVs0|_], Ps) :-
%    length(NVs0, L), (L > 64 -> clpbn_gviz:clpbn2gviz(user_error,sort,NVs0,LVs) ; true ),
    find_all_clpbn_vars(NVs0, LVi),
    % construct the graph
    process(LVi, LVs, P).
solve_bp([_|MoreLVs], [_|MoreLVis], Ps) :-
    solve_bp(MoreLVs, MoreLVis, Ps).


% get a list of variables plus associated tables
%
find_all_clpbn_vars([], []).
find_all_clpbn_vars([V|Vs], [var(V,Id,Parents,Domain,Matrix,Ev)|LV]) :-
    clpbn:get_atts(V, [dist(Id,Parents)]), !,
    get_dist_domain(Id, Domain),
    get_dist_params(Id, Matrix),
    get_evidence(V, Ev),
    find_all_clpbn_vars(Vs, LV).
find_all_clpbn_vars([_|Vs], LV) :-
    find_all_clpbn_vars(Vs, LV).

get_evidence(V, Ev) :-
    clpbn:get_atts(V, [evidence(Ev)]), !.
get_evidence(V, -1).  % no evidence!!!

% to be defined in C
% +LVO is the list of all variables
% +InputVs are the variables to be marginalised
% -Out is some output term stating the probabilities
%
process(LV0, InputVs, Out) :-
	length(LV0, N),
	length(InputVs, NI),
	writeln(process(LV0, InputVs, Out)),
	bp_process(N, LV0, NI, InputVs, Out),
	fail.