This file is indexed.

/usr/share/Yap/clpqr/project.pl is in yap 6.2.2-6+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* 

    Part of CLP(Q,R) (Constraint Logic Programming over Rationals and Reals)

    Author:        Leslie De Koninck
    E-mail:        Leslie.DeKoninck@cs.kuleuven.be
    WWW:           http://www.swi-prolog.org
		   http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
    Copyright (C): 2006, K.U. Leuven and
		   1992-1995, Austrian Research Institute for
		              Artificial Intelligence (OFAI),
			      Vienna, Austria

    This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
    Prolog and distributed under the license details below with permission from
    all mentioned authors.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

%
% Answer constraint projection
%

%:- public project_attributes/2. 		% xref.pl

:- module(project,
	[
	    drop_dep/1,
	    drop_dep_one/1,
	    make_target_indep/2,
	    project_attributes/2
	]).
:- use_module(class,
	[
	    class_allvars/2
	]).
:- use_module(geler,
	[
	    project_nonlin/3
	]).
:- use_module(redund,
	[
	    redundancy_vars/1,
	    systems/3
	]).
:- use_module(ordering,
	[
	    arrangement/2
	]).

%
% interface predicate
%
% May be destructive (either acts on a copy or in a failure loop)
%
project_attributes(TargetVars,Cvas) :-
	sort(TargetVars,Tvs),		% duplicates ?
	sort(Cvas,Avs),			% duplicates ?
	get_clp(TargetVars,CLP),
	(   nonvar(CLP)
	->  mark_target(Tvs),
	    project_nonlin(Tvs,Avs,NlReachable),
	    (   Tvs == []
	    ->  drop_lin_atts(Avs)
	    ;   redundancy_vars(Avs),		% removes redundant bounds (redund.pl)
		make_target_indep(Tvs,Pivots),	% pivot partners are marked to be kept during elim.	
		mark_target(NlReachable),	% after make_indep to express priority
		drop_dep(Avs),
		fm_elim(CLP,Avs,Tvs,Pivots),
		impose_ordering(Avs)
	    )
	;   true
	).

fm_elim(clpq,Avs,Tvs,Pivots) :- fourmotz_q:fm_elim(Avs,Tvs,Pivots).
fm_elim(clpr,Avs,Tvs,Pivots) :- fourmotz_r:fm_elim(Avs,Tvs,Pivots).

get_clp([],_).
get_clp([H|T],CLP) :-
	(   get_attr(H,itf,Att)
	->  arg(1,Att,CLP)
	;   true
	),
	get_clp(T,CLP).

% mark_target(Vars)
%
% Marks the variables in Vars as target variables.

mark_target([]).
mark_target([V|Vs]) :-
	(   get_attr(V,itf,Att)
	->  setarg(9,Att,target)
	;   true
	),
	mark_target(Vs).
	

% mark_keep(Vars)
%
% Mark the variables in Vars to be kept during elimination.

mark_keep([]).
mark_keep([V|Vs]) :-
	get_attr(V,itf,Att),
	setarg(11,Att,keep),
	mark_keep(Vs).

%
% Collect the pivots in reverse order
% We have to protect the target variables pivot partners
% from redundancy eliminations triggered by fm_elim,
% in order to allow for reverse pivoting.
%
make_target_indep(Ts,Ps) :- make_target_indep(Ts,[],Ps).

% make_target_indep(Targets,Pivots,PivotsTail)
%
% Tries to make as many targetvariables independent by pivoting them with a non-target
% variable. The pivots are stored as T:NT where T is a target variable and NT a non-target
% variable. The non-target variables are marked to be kept during redundancy eliminations.

make_target_indep([],Ps,Ps).
make_target_indep([T|Ts],Ps0,Pst) :-
	(   get_attr(T,itf,AttT),
	    arg(1,AttT,CLP),
	    arg(2,AttT,type(Type)),
	    arg(4,AttT,lin([_,_|H])),
	    nontarget(H,Nt)
	->  Ps1 = [T:Nt|Ps0],
	    get_attr(Nt,itf,AttN),
	    arg(2,AttN,type(IndAct)),
	    arg(5,AttN,order(Ord)),
	    arg(6,AttN,class(Class)),
	    setarg(11,AttN,keep),
	    pivot(CLP,T,Class,Ord,Type,IndAct)
	;   Ps1 = Ps0
	),
	make_target_indep(Ts,Ps1,Pst).

% nontarget(Hom,Nt)
%
% Finds a nontarget variable in homogene part Hom.
% Hom contains elements of the form l(V*K,OrdV).
% A nontarget variable has no target attribute and no keep_indep attribute.

nontarget([l(V*_,_)|Vs],Nt) :-
	(   get_attr(V,itf,Att),
	    arg(9,Att,n),
	    arg(10,Att,n)
	->  Nt = V
	;   nontarget(Vs,Nt)
	).

% drop_dep(Vars)
%
% Does drop_dep_one/1 on each variable in Vars.

drop_dep(Vs) :- 
	var(Vs),
	!.
drop_dep([]).
drop_dep([V|Vs]) :-
	drop_dep_one(V),
	drop_dep(Vs).

% drop_dep_one(V)
%
% If V is an unbounded dependent variable that isn't a target variable, shouldn't be kept
% and is not nonzero, drops all linear attributes of V.
% The linear attributes are: type, strictness, linear equation (lin), class and order.

drop_dep_one(V) :-
	get_attr(V,itf,Att),
	Att = t(CLP,type(t_none),_,lin(Lin),order(OrdV),_,_,n,n,_,n),
	\+ indep(CLP,Lin,OrdV),
	!,
	setarg(2,Att,n),
	setarg(3,Att,n),
	setarg(4,Att,n),
	setarg(5,Att,n),
	setarg(6,Att,n).
drop_dep_one(_).

indep(clpq,Lin,OrdV) :- store_q:indep(Lin,OrdV).
indep(clpr,Lin,OrdV) :- store_r:indep(Lin,OrdV).

pivot(clpq,T,Class,Ord,Type,IndAct) :- bv_q:pivot(T,Class,Ord,Type,IndAct).
pivot(clpr,T,Class,Ord,Type,IndAct) :- bv_r:pivot(T,Class,Ord,Type,IndAct).

renormalize(clpq,Lin,New) :- store_q:renormalize(Lin,New).
renormalize(clpr,Lin,New) :- store_r:renormalize(Lin,New).

% drop_lin_atts(Vs)
%
% Removes the linear attributes of the variables in Vs.
% The linear attributes are type, strictness, linear equation (lin), order and class.

drop_lin_atts([]).
drop_lin_atts([V|Vs]) :-
	get_attr(V,itf,Att),
	setarg(2,Att,n),
	setarg(3,Att,n),
	setarg(4,Att,n),
	setarg(5,Att,n),
	setarg(6,Att,n),
	drop_lin_atts(Vs).

impose_ordering(Cvas) :-
	systems(Cvas,[],Sys),
	impose_ordering_sys(Sys).

impose_ordering_sys([]).
impose_ordering_sys([S|Ss]) :-
	arrangement(S,Arr),	% ordering.pl
	arrange(Arr,S),
	impose_ordering_sys(Ss).

arrange([],_).
arrange(Arr,S) :- 
	Arr = [_|_],
	class_allvars(S,All),
	order(Arr,1,N),
	order(All,N,_),
	renorm_all(All),
	arrange_pivot(All).

order(Xs,N,M) :- 
	var(Xs),
	!,
	N = M.
order([],N,N).
order([X|Xs],N,M) :-
	(   get_attr(X,itf,Att),
	    arg(5,Att,order(O)),
	    var(O)
	->  O = N,
	    N1 is N+1,
	    order(Xs,N1,M)
	;   order(Xs,N,M)
	).

% renorm_all(Vars)
%
% Renormalizes all linear equations of the variables in difference list Vars to reflect
% their new ordering.

renorm_all(Xs) :- 
	var(Xs),
	!.
renorm_all([X|Xs]) :-
	(   get_attr(X,itf,Att),
	    arg(1,Att,CLP),
	    arg(4,Att,lin(Lin))
	->  renormalize(CLP,Lin,New),
	    setarg(4,Att,lin(New)),
	    renorm_all(Xs)
	;   renorm_all(Xs)
	).

% arrange_pivot(Vars)
%
% If variable X of Vars has type t_none and has a higher order than the first element of
% its linear equation, then it is pivoted with that element.

arrange_pivot(Xs) :- 
	var(Xs),
	!.
arrange_pivot([X|Xs]) :-
	(   get_attr(X,itf,AttX),
	    %arg(8,AttX,n), % not for nonzero
	    arg(1,AttX,CLP),
	    arg(2,AttX,type(t_none)),
	    arg(4,AttX,lin(Lin)),
	    arg(5,AttX,order(OrdX)),
	    Lin = [_,_,l(Y*_,_)|_],
	    get_attr(Y,itf,AttY),
	    arg(2,AttY,type(IndAct)),
	    arg(5,AttY,order(OrdY)),
	    arg(6,AttY,class(Class)),
	    compare(>,OrdY,OrdX)
	->  pivot(CLP,X,Class,OrdY,t_none,IndAct),
	    arrange_pivot(Xs)
	;   arrange_pivot(Xs)
	).