This file is indexed.

/usr/share/Yap/ordsets.yap is in yap 6.2.2-6+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
% This file has been included as an YAP library by Vitor Santos Costa, 1999

%   File   : ORDSET.PL
%   Author : R.A.O'Keefe
%   Updated: 22 May 1983
%   Purpose: Ordered set manipulation utilities

%   In this module, sets are represented by ordered lists with no
%   duplicates.  Thus {c,r,a,f,t} would be [a,c,f,r,t].  The ordering
%   is defined by the @< family of term comparison predicates, which
%   is the ordering used by sort/2 and setof/3.

%   The benefit of the ordered representation is that the elementary
%   set operations can be done in time proportional to the Sum of the
%   argument sizes rather than their Product.  Some of the unordered
%   set routines, such as member/2, length/2, select/3 can be used
%   unchanged.  The main difficulty with the ordered representation is
%   remembering to use it!

:- module(ordsets, [
	list_to_ord_set/2,	%  List -> Set
	merge/3,		%  OrdList x OrdList -> OrdList
	ord_add_element/3,	%  Set x Elem -> Set
	ord_del_element/3,	%  Set x Elem -> Set
	ord_disjoint/2,		%  Set x Set ->
	ord_insert/3,		%  Set x Elem -> Set
        ord_member/2,           %  Set -> Elem
	ord_intersect/2,	%  Set x Set ->
	ord_intersect/3,	%  Set x Set -> Set
	ord_intersection/3,	%  Set x Set -> Set
	ord_intersection/4,	%  Set x Set -> Set x Set
	ord_seteq/2,		%  Set x Set ->
	ord_setproduct/3,	%  Set x Set -> Set
	ord_subset/2,		%  Set x Set ->
	ord_subtract/3,		%  Set x Set -> Set
	ord_symdiff/3,		%  Set x Set -> Set
        ord_union/2,            %  Set^2 -> Set
	ord_union/3,		%  Set x Set -> Set
	ord_union/4,		%  Set x Set -> Set x Set,
	ord_empty/1,             % -> Set
	ord_memberchk/2             % Element X Set
      ]).

/*
:- mode
	list_to_ord_set(+, ?),
	merge(+, +, -),
	ord_disjoint(+, +),
	ord_disjoint(+, +, +, +, +),
	ord_insert(+, +, ?),
	ord_insert(+, +, +, +, ?),
	ord_intersect(+, +),
	ord_intersect(+, +, +, +, +),
	ord_intersect(+, +, ?),
	ord_intersect(+, +, +, +, +, ?),
	ord_seteq(+, +),
	ord_subset(+, +),
	ord_subset(+, +, +, +, +),
	ord_subtract(+, +, ?), 
	ord_subtract(+, +, +, +, +, ?),
	ord_symdiff(+, +, ?),
	ord_symdiff(+, +, +, +, +, ?),
	ord_union(+, +, ?),
	ord_union(+, +, +, +, +, ?).
*/


%   list_to_ord_set(+List, ?Set)
%   is true when Set is the ordered representation of the set represented
%   by the unordered representation List.  The only reason for giving it
%   a name at all is that you may not have realised that sort/2 could be
%   used this way.

list_to_ord_set(List, Set) :-
	sort(List, Set).


%   merge(+List1, +List2, -Merged)
%   is true when Merged is the stable merge of the two given lists.
%   If the two lists are not ordered, the merge doesn't mean a great
%   deal.  Merging is perfectly well defined when the inputs contain
%   duplicates, and all copies of an element are preserved in the
%   output, e.g. merge("122357", "34568", "12233455678").  Study this
%   routine carefully, as it is the basis for all the rest.

merge([Head1|Tail1], [Head2|Tail2], [Head2|Merged]) :-
	Head1 @> Head2, !,
	merge([Head1|Tail1], Tail2, Merged).
merge([Head1|Tail1], List2, [Head1|Merged]) :-
	List2 \== [], !,
	merge(Tail1, List2, Merged).
merge([], List2, List2) :- !.
merge(List1, [], List1).



%   ord_disjoint(+Set1, +Set2)
%   is true when the two ordered sets have no element in common.  If the
%   arguments are not ordered, I have no idea what happens.

ord_disjoint([], _) :- !.
ord_disjoint(_, []) :- !.
ord_disjoint([Head1|Tail1], [Head2|Tail2]) :-
	compare(Order, Head1, Head2),
	ord_disjoint(Order, Head1, Tail1, Head2, Tail2).

ord_disjoint(<, _, Tail1, Head2, Tail2) :-
	ord_disjoint(Tail1, [Head2|Tail2]).
ord_disjoint(>, Head1, Tail1, _, Tail2) :-
	ord_disjoint([Head1|Tail1], Tail2).



%   ord_insert(+Set1, +Element, ?Set2)
%   ord_add_element(+Set1, +Element, ?Set2)
%   is the equivalent of add_element for ordered sets.  It should give
%   exactly the same result as merge(Set1, [Element], Set2), but a bit
%   faster, and certainly more clearly.

ord_add_element([], Element, [Element]).
ord_add_element([Head|Tail], Element, Set) :-
	compare(Order, Head, Element),
	ord_insert(Order, Head, Tail, Element, Set).


ord_insert([], Element, [Element]).
ord_insert([Head|Tail], Element, Set) :-
	compare(Order, Head, Element),
	ord_insert(Order, Head, Tail, Element, Set).


ord_insert(<, Head, Tail, Element, [Head|Set]) :-
	ord_insert(Tail, Element, Set).
ord_insert(=, Head, Tail, _, [Head|Tail]).
ord_insert(>, Head, Tail, Element, [Element,Head|Tail]).



%   ord_intersect(+Set1, +Set2)
%   is true when the two ordered sets have at least one element in common.
%   Note that the test is == rather than = .

ord_intersect([Head1|Tail1], [Head2|Tail2]) :-
	compare(Order, Head1, Head2),
	ord_intersect(Order, Head1, Tail1, Head2, Tail2).

ord_intersect(=, _, _, _, _).
ord_intersect(<, _, Tail1, Head2, Tail2) :-
	ord_intersect(Tail1, [Head2|Tail2]).
ord_intersect(>, Head1, Tail1, _, Tail2) :-
	ord_intersect([Head1|Tail1], Tail2).

ord_intersect(L1, L2, L) :-
	ord_intersection(L1, L2, L).


%   ord_intersection(+Set1, +Set2, ?Intersection)
%   is true when Intersection is the ordered representation of Set1
%   and Set2, provided that Set1 and Set2 are ordered sets.

ord_intersection([], _, []) :- !.
ord_intersection([_|_], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection) :-
	( Head1 == Head2 ->
	    Intersection = [Head1|Tail],
	    ord_intersection(Tail1, Tail2, Tail)
	;
	    Head1 @< Head2 ->
	    ord_intersection(Tail1, [Head2|Tail2], Intersection)
	;
	    ord_intersection([Head1|Tail1], Tail2, Intersection)
	).

%   ord_intersection(+Set1, +Set2, ?Intersection, ?Difference)
%   is true when Intersection is the ordered representation of Set1
%   and Set2, provided that Set1 and Set2 are ordered sets.

ord_intersection([], L, [], L) :- !.
ord_intersection([_|_], [], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection, Difference) :-
	( Head1 == Head2 ->
	    Intersection = [Head1|Tail],
	    ord_intersection(Tail1, Tail2, Tail, Difference)
	;
	    Head1 @< Head2 ->
	    ord_intersection(Tail1, [Head2|Tail2], Intersection, Difference)
	;
	    Difference = [Head2|HDifference],
	    ord_intersection([Head1|Tail1], Tail2, Intersection, HDifference)
	).


%   ord_seteq(+Set1, +Set2)
%   is true when the two arguments represent the same set.  Since they
%   are assumed to be ordered representations, they must be identical.


ord_seteq(Set1, Set2) :-
	Set1 == Set2.



%   ord_subset(+Set1, +Set2)
%   is true when every element of the ordered set Set1 appears in the
%   ordered set Set2.

ord_subset([], _) :- !.
ord_subset([Head1|Tail1], [Head2|Tail2]) :-
	compare(Order, Head1, Head2),
	ord_subset(Order, Head1, Tail1, Head2, Tail2).

ord_subset(=, _, Tail1, _, Tail2) :-
	ord_subset(Tail1, Tail2).
ord_subset(>, Head1, Tail1, _, Tail2) :-
	ord_subset([Head1|Tail1], Tail2).



%   ord_subtract(+Set1, +Set2, ?Difference)
%   is true when Difference contains all and only the elements of Set1
%   which are not also in Set2.


ord_subtract(Set1, [], Set1) :- !.
ord_subtract([], _, []) :- !.
ord_subtract([Head1|Tail1], [Head2|Tail2], Difference) :-
	compare(Order, Head1, Head2),
	ord_subtract(Order, Head1, Tail1, Head2, Tail2, Difference).

ord_subtract(=, _,     Tail1, _,     Tail2, Difference) :-
	ord_subtract(Tail1, Tail2, Difference).
ord_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
	ord_subtract(Tail1, [Head2|Tail2], Difference).
ord_subtract(>, Head1, Tail1, _,     Tail2, Difference) :-
	ord_subtract([Head1|Tail1], Tail2, Difference).


%   ord_del_element(+Set1, Element, ?Rest)
%   is true when Rest contains the elements of Set1
%   except for Set1


ord_del_element([], _, []).
ord_del_element([Head1|Tail1], Head2, Rest) :-
	compare(Order, Head1, Head2),
	ord_del_element(Order, Head1, Tail1, Head2, Rest).

ord_del_element(=, _,     Tail1, _, Tail1).
ord_del_element(<, Head1, Tail1, Head2, [Head1|Difference]) :-
	ord_del_element(Tail1, Head2, Difference).
ord_del_element(>, Head1, Tail1, _, [Head1|Tail1]).



%   ord_symdiff(+Set1, +Set2, ?Difference)
%   is true when Difference is the symmetric difference of Set1 and Set2.

ord_symdiff(Set1, [], Set1) :- !.
ord_symdiff([], Set2, Set2) :- !.
ord_symdiff([Head1|Tail1], [Head2|Tail2], Difference) :-
	compare(Order, Head1, Head2),
	ord_symdiff(Order, Head1, Tail1, Head2, Tail2, Difference).

ord_symdiff(=, _,     Tail1, _,     Tail2, Difference) :-
	ord_symdiff(Tail1, Tail2, Difference).
ord_symdiff(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
	ord_symdiff(Tail1, [Head2|Tail2], Difference).
ord_symdiff(>, Head1, Tail1, Head2, Tail2, [Head2|Difference]) :-
	ord_symdiff([Head1|Tail1], Tail2, Difference).



%   ord_union(+Set1, +Set2, ?Union)
%   is true when Union is the union of Set1 and Set2.  Note that when
%   something occurs in both sets, we want to retain only one copy.

ord_union(Set1, [], Set1) :- !.
ord_union([], Set2, Set2) :- !.
ord_union([Head1|Tail1], [Head2|Tail2], Union) :-
	compare(Order, Head1, Head2),
	ord_union(Order, Head1, Tail1, Head2, Tail2, Union).

ord_union(=, Head,  Tail1, _,     Tail2, [Head|Union]) :-
	ord_union(Tail1, Tail2, Union).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
	ord_union(Tail1, [Head2|Tail2], Union).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
	ord_union([Head1|Tail1], Tail2, Union).


%   ord_union(+Set1, +Set2, ?Union, ?Difference)
%   is true when Union is the union of Set1 and Set2 and Difference is the
%   difference between Set2 and Set1.

ord_union(Set1, [], Set1, []) :- !.
ord_union([], Set2, Set2, Set2) :- !.
ord_union([Head1|Tail1], [Head2|Tail2], Union, Diff) :-
	compare(Order, Head1, Head2),
	ord_union(Order, Head1, Tail1, Head2, Tail2, Union, Diff).

ord_union(=, Head,  Tail1, _,  Tail2, [Head|Union], Diff) :-
	ord_union(Tail1, Tail2, Union, Diff).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union], Diff) :-
	ord_union(Tail1, [Head2|Tail2], Union, Diff).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union], [Head2|Diff]) :-
	ord_union([Head1|Tail1], Tail2, Union, Diff).



%   ord_setproduct(+Set1, +Set2, ?Product)
%   is in fact identical to setproduct(Set1, Set2, Product).
%   If Set1 and Set2 are ordered sets, Product will be an ordered
%   set of x1-x2 pairs.  Note that we cannot solve for Set1 and
%   Set2, because there are infinitely many solutions when
%   Product is empty, and may be a large number in other cases.

ord_setproduct([], _, []).
ord_setproduct([H|T], L, Product) :-
	ord_setproduct(L, H, Product, Rest),
	ord_setproduct(T, L, Rest).

ord_setproduct([], _, L, L).
ord_setproduct([H|T], X, [X-H|TX], TL) :-
	ord_setproduct(T, X, TX, TL).


ord_member(El,[H|T]):-
    compare(Op,El,H),
    ord_member(Op,El,T).

ord_member(=,_,_).
ord_member(>,El,[H|T]) :-
    compare(Op,El,H),
    ord_member(Op,El,T).

ord_union([], []).
ord_union([Set|Sets], Union) :-
    length([Set|Sets], NumberOfSets),
    ord_union_all(NumberOfSets, [Set|Sets], Union, []).

ord_union_all(N,Sets0,Union,Sets) :-
    (  N=:=1  -> Sets0=[Union|Sets]
    ;  N=:=2  -> Sets0=[Set1,Set2|Sets], 
                 ord_union(Set1,Set2,Union)
    ;  A is N>>1,
       Z is N-A,
       ord_union_all(A, Sets0, X, Sets1),
       ord_union_all(Z, Sets1, Y, Sets),
       ord_union(X, Y, Union)
    ).

ord_empty([]).

ord_memberchk(Element, [E|_]) :- E == Element, !.
ord_memberchk(Element, [_|Set]) :-
	ord_memberchk(Element, Set).