/usr/share/Yap/ordsets.yap is in yap 6.2.2-6+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 | % This file has been included as an YAP library by Vitor Santos Costa, 1999
% File : ORDSET.PL
% Author : R.A.O'Keefe
% Updated: 22 May 1983
% Purpose: Ordered set manipulation utilities
% In this module, sets are represented by ordered lists with no
% duplicates. Thus {c,r,a,f,t} would be [a,c,f,r,t]. The ordering
% is defined by the @< family of term comparison predicates, which
% is the ordering used by sort/2 and setof/3.
% The benefit of the ordered representation is that the elementary
% set operations can be done in time proportional to the Sum of the
% argument sizes rather than their Product. Some of the unordered
% set routines, such as member/2, length/2, select/3 can be used
% unchanged. The main difficulty with the ordered representation is
% remembering to use it!
:- module(ordsets, [
list_to_ord_set/2, % List -> Set
merge/3, % OrdList x OrdList -> OrdList
ord_add_element/3, % Set x Elem -> Set
ord_del_element/3, % Set x Elem -> Set
ord_disjoint/2, % Set x Set ->
ord_insert/3, % Set x Elem -> Set
ord_member/2, % Set -> Elem
ord_intersect/2, % Set x Set ->
ord_intersect/3, % Set x Set -> Set
ord_intersection/3, % Set x Set -> Set
ord_intersection/4, % Set x Set -> Set x Set
ord_seteq/2, % Set x Set ->
ord_setproduct/3, % Set x Set -> Set
ord_subset/2, % Set x Set ->
ord_subtract/3, % Set x Set -> Set
ord_symdiff/3, % Set x Set -> Set
ord_union/2, % Set^2 -> Set
ord_union/3, % Set x Set -> Set
ord_union/4, % Set x Set -> Set x Set,
ord_empty/1, % -> Set
ord_memberchk/2 % Element X Set
]).
/*
:- mode
list_to_ord_set(+, ?),
merge(+, +, -),
ord_disjoint(+, +),
ord_disjoint(+, +, +, +, +),
ord_insert(+, +, ?),
ord_insert(+, +, +, +, ?),
ord_intersect(+, +),
ord_intersect(+, +, +, +, +),
ord_intersect(+, +, ?),
ord_intersect(+, +, +, +, +, ?),
ord_seteq(+, +),
ord_subset(+, +),
ord_subset(+, +, +, +, +),
ord_subtract(+, +, ?),
ord_subtract(+, +, +, +, +, ?),
ord_symdiff(+, +, ?),
ord_symdiff(+, +, +, +, +, ?),
ord_union(+, +, ?),
ord_union(+, +, +, +, +, ?).
*/
% list_to_ord_set(+List, ?Set)
% is true when Set is the ordered representation of the set represented
% by the unordered representation List. The only reason for giving it
% a name at all is that you may not have realised that sort/2 could be
% used this way.
list_to_ord_set(List, Set) :-
sort(List, Set).
% merge(+List1, +List2, -Merged)
% is true when Merged is the stable merge of the two given lists.
% If the two lists are not ordered, the merge doesn't mean a great
% deal. Merging is perfectly well defined when the inputs contain
% duplicates, and all copies of an element are preserved in the
% output, e.g. merge("122357", "34568", "12233455678"). Study this
% routine carefully, as it is the basis for all the rest.
merge([Head1|Tail1], [Head2|Tail2], [Head2|Merged]) :-
Head1 @> Head2, !,
merge([Head1|Tail1], Tail2, Merged).
merge([Head1|Tail1], List2, [Head1|Merged]) :-
List2 \== [], !,
merge(Tail1, List2, Merged).
merge([], List2, List2) :- !.
merge(List1, [], List1).
% ord_disjoint(+Set1, +Set2)
% is true when the two ordered sets have no element in common. If the
% arguments are not ordered, I have no idea what happens.
ord_disjoint([], _) :- !.
ord_disjoint(_, []) :- !.
ord_disjoint([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_disjoint(Order, Head1, Tail1, Head2, Tail2).
ord_disjoint(<, _, Tail1, Head2, Tail2) :-
ord_disjoint(Tail1, [Head2|Tail2]).
ord_disjoint(>, Head1, Tail1, _, Tail2) :-
ord_disjoint([Head1|Tail1], Tail2).
% ord_insert(+Set1, +Element, ?Set2)
% ord_add_element(+Set1, +Element, ?Set2)
% is the equivalent of add_element for ordered sets. It should give
% exactly the same result as merge(Set1, [Element], Set2), but a bit
% faster, and certainly more clearly.
ord_add_element([], Element, [Element]).
ord_add_element([Head|Tail], Element, Set) :-
compare(Order, Head, Element),
ord_insert(Order, Head, Tail, Element, Set).
ord_insert([], Element, [Element]).
ord_insert([Head|Tail], Element, Set) :-
compare(Order, Head, Element),
ord_insert(Order, Head, Tail, Element, Set).
ord_insert(<, Head, Tail, Element, [Head|Set]) :-
ord_insert(Tail, Element, Set).
ord_insert(=, Head, Tail, _, [Head|Tail]).
ord_insert(>, Head, Tail, Element, [Element,Head|Tail]).
% ord_intersect(+Set1, +Set2)
% is true when the two ordered sets have at least one element in common.
% Note that the test is == rather than = .
ord_intersect([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_intersect(Order, Head1, Tail1, Head2, Tail2).
ord_intersect(=, _, _, _, _).
ord_intersect(<, _, Tail1, Head2, Tail2) :-
ord_intersect(Tail1, [Head2|Tail2]).
ord_intersect(>, Head1, Tail1, _, Tail2) :-
ord_intersect([Head1|Tail1], Tail2).
ord_intersect(L1, L2, L) :-
ord_intersection(L1, L2, L).
% ord_intersection(+Set1, +Set2, ?Intersection)
% is true when Intersection is the ordered representation of Set1
% and Set2, provided that Set1 and Set2 are ordered sets.
ord_intersection([], _, []) :- !.
ord_intersection([_|_], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection) :-
( Head1 == Head2 ->
Intersection = [Head1|Tail],
ord_intersection(Tail1, Tail2, Tail)
;
Head1 @< Head2 ->
ord_intersection(Tail1, [Head2|Tail2], Intersection)
;
ord_intersection([Head1|Tail1], Tail2, Intersection)
).
% ord_intersection(+Set1, +Set2, ?Intersection, ?Difference)
% is true when Intersection is the ordered representation of Set1
% and Set2, provided that Set1 and Set2 are ordered sets.
ord_intersection([], L, [], L) :- !.
ord_intersection([_|_], [], [], []) :- !.
ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection, Difference) :-
( Head1 == Head2 ->
Intersection = [Head1|Tail],
ord_intersection(Tail1, Tail2, Tail, Difference)
;
Head1 @< Head2 ->
ord_intersection(Tail1, [Head2|Tail2], Intersection, Difference)
;
Difference = [Head2|HDifference],
ord_intersection([Head1|Tail1], Tail2, Intersection, HDifference)
).
% ord_seteq(+Set1, +Set2)
% is true when the two arguments represent the same set. Since they
% are assumed to be ordered representations, they must be identical.
ord_seteq(Set1, Set2) :-
Set1 == Set2.
% ord_subset(+Set1, +Set2)
% is true when every element of the ordered set Set1 appears in the
% ordered set Set2.
ord_subset([], _) :- !.
ord_subset([Head1|Tail1], [Head2|Tail2]) :-
compare(Order, Head1, Head2),
ord_subset(Order, Head1, Tail1, Head2, Tail2).
ord_subset(=, _, Tail1, _, Tail2) :-
ord_subset(Tail1, Tail2).
ord_subset(>, Head1, Tail1, _, Tail2) :-
ord_subset([Head1|Tail1], Tail2).
% ord_subtract(+Set1, +Set2, ?Difference)
% is true when Difference contains all and only the elements of Set1
% which are not also in Set2.
ord_subtract(Set1, [], Set1) :- !.
ord_subtract([], _, []) :- !.
ord_subtract([Head1|Tail1], [Head2|Tail2], Difference) :-
compare(Order, Head1, Head2),
ord_subtract(Order, Head1, Tail1, Head2, Tail2, Difference).
ord_subtract(=, _, Tail1, _, Tail2, Difference) :-
ord_subtract(Tail1, Tail2, Difference).
ord_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
ord_subtract(Tail1, [Head2|Tail2], Difference).
ord_subtract(>, Head1, Tail1, _, Tail2, Difference) :-
ord_subtract([Head1|Tail1], Tail2, Difference).
% ord_del_element(+Set1, Element, ?Rest)
% is true when Rest contains the elements of Set1
% except for Set1
ord_del_element([], _, []).
ord_del_element([Head1|Tail1], Head2, Rest) :-
compare(Order, Head1, Head2),
ord_del_element(Order, Head1, Tail1, Head2, Rest).
ord_del_element(=, _, Tail1, _, Tail1).
ord_del_element(<, Head1, Tail1, Head2, [Head1|Difference]) :-
ord_del_element(Tail1, Head2, Difference).
ord_del_element(>, Head1, Tail1, _, [Head1|Tail1]).
% ord_symdiff(+Set1, +Set2, ?Difference)
% is true when Difference is the symmetric difference of Set1 and Set2.
ord_symdiff(Set1, [], Set1) :- !.
ord_symdiff([], Set2, Set2) :- !.
ord_symdiff([Head1|Tail1], [Head2|Tail2], Difference) :-
compare(Order, Head1, Head2),
ord_symdiff(Order, Head1, Tail1, Head2, Tail2, Difference).
ord_symdiff(=, _, Tail1, _, Tail2, Difference) :-
ord_symdiff(Tail1, Tail2, Difference).
ord_symdiff(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
ord_symdiff(Tail1, [Head2|Tail2], Difference).
ord_symdiff(>, Head1, Tail1, Head2, Tail2, [Head2|Difference]) :-
ord_symdiff([Head1|Tail1], Tail2, Difference).
% ord_union(+Set1, +Set2, ?Union)
% is true when Union is the union of Set1 and Set2. Note that when
% something occurs in both sets, we want to retain only one copy.
ord_union(Set1, [], Set1) :- !.
ord_union([], Set2, Set2) :- !.
ord_union([Head1|Tail1], [Head2|Tail2], Union) :-
compare(Order, Head1, Head2),
ord_union(Order, Head1, Tail1, Head2, Tail2, Union).
ord_union(=, Head, Tail1, _, Tail2, [Head|Union]) :-
ord_union(Tail1, Tail2, Union).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
ord_union(Tail1, [Head2|Tail2], Union).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
ord_union([Head1|Tail1], Tail2, Union).
% ord_union(+Set1, +Set2, ?Union, ?Difference)
% is true when Union is the union of Set1 and Set2 and Difference is the
% difference between Set2 and Set1.
ord_union(Set1, [], Set1, []) :- !.
ord_union([], Set2, Set2, Set2) :- !.
ord_union([Head1|Tail1], [Head2|Tail2], Union, Diff) :-
compare(Order, Head1, Head2),
ord_union(Order, Head1, Tail1, Head2, Tail2, Union, Diff).
ord_union(=, Head, Tail1, _, Tail2, [Head|Union], Diff) :-
ord_union(Tail1, Tail2, Union, Diff).
ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union], Diff) :-
ord_union(Tail1, [Head2|Tail2], Union, Diff).
ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union], [Head2|Diff]) :-
ord_union([Head1|Tail1], Tail2, Union, Diff).
% ord_setproduct(+Set1, +Set2, ?Product)
% is in fact identical to setproduct(Set1, Set2, Product).
% If Set1 and Set2 are ordered sets, Product will be an ordered
% set of x1-x2 pairs. Note that we cannot solve for Set1 and
% Set2, because there are infinitely many solutions when
% Product is empty, and may be a large number in other cases.
ord_setproduct([], _, []).
ord_setproduct([H|T], L, Product) :-
ord_setproduct(L, H, Product, Rest),
ord_setproduct(T, L, Rest).
ord_setproduct([], _, L, L).
ord_setproduct([H|T], X, [X-H|TX], TL) :-
ord_setproduct(T, X, TX, TL).
ord_member(El,[H|T]):-
compare(Op,El,H),
ord_member(Op,El,T).
ord_member(=,_,_).
ord_member(>,El,[H|T]) :-
compare(Op,El,H),
ord_member(Op,El,T).
ord_union([], []).
ord_union([Set|Sets], Union) :-
length([Set|Sets], NumberOfSets),
ord_union_all(NumberOfSets, [Set|Sets], Union, []).
ord_union_all(N,Sets0,Union,Sets) :-
( N=:=1 -> Sets0=[Union|Sets]
; N=:=2 -> Sets0=[Set1,Set2|Sets],
ord_union(Set1,Set2,Union)
; A is N>>1,
Z is N-A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union)
).
ord_empty([]).
ord_memberchk(Element, [E|_]) :- E == Element, !.
ord_memberchk(Element, [_|Set]) :-
ord_memberchk(Element, Set).
|