This file is indexed.

/usr/share/agda-stdlib/Data/Vec/N-ary.agda is in agda-stdlib 0.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
------------------------------------------------------------------------
-- The Agda standard library
--
-- Code for converting Vec A n → B to and from n-ary functions
------------------------------------------------------------------------

module Data.Vec.N-ary where

open import Data.Nat hiding (_⊔_)
open import Data.Product as Prod
open import Data.Vec
open import Function
open import Function.Equivalence using (_⇔_; equivalence)
open import Level using (Level; _⊔_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable

------------------------------------------------------------------------
-- N-ary functions

N-ary-level : Level → Level → ℕ → Level
N-ary-level ℓ₁ ℓ₂ zero    = ℓ₂
N-ary-level ℓ₁ ℓ₂ (suc n) = ℓ₁ ⊔ N-ary-level ℓ₁ ℓ₂ n

N-ary : ∀ {ℓ₁ ℓ₂} (n : ℕ) → Set ℓ₁ → Set ℓ₂ → Set (N-ary-level ℓ₁ ℓ₂ n)
N-ary zero    A B = B
N-ary (suc n) A B = A → N-ary n A B

------------------------------------------------------------------------
-- Conversion

curryⁿ : ∀ {n a b} {A : Set a} {B : Set b} →
         (Vec A n → B) → N-ary n A B
curryⁿ {zero}  f = f []
curryⁿ {suc n} f = λ x → curryⁿ (f ∘ _∷_ x)

_$ⁿ_ : ∀ {n a b} {A : Set a} {B : Set b} → N-ary n A B → (Vec A n → B)
f $ⁿ []       = f
f $ⁿ (x ∷ xs) = f x $ⁿ xs

------------------------------------------------------------------------
-- Quantifiers

-- Universal quantifier.

∀ⁿ : ∀ n {a ℓ} {A : Set a} →
     N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∀ⁿ zero    P = P
∀ⁿ (suc n) P = ∀ x → ∀ⁿ n (P x)

-- Universal quantifier with implicit (hidden) arguments.

∀ⁿʰ : ∀ n {a ℓ} {A : Set a} →
     N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∀ⁿʰ zero    P = P
∀ⁿʰ (suc n) P = ∀ {x} → ∀ⁿʰ n (P x)

-- Existential quantifier.

∃ⁿ : ∀ n {a ℓ} {A : Set a} →
     N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n)
∃ⁿ zero    P = P
∃ⁿ (suc n) P = ∃ λ x → ∃ⁿ n (P x)

------------------------------------------------------------------------
-- N-ary function equality

Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n →
     REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n)
Eq n _∼_ f g = ∀ⁿ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs))

-- A variant where all the arguments are implicit (hidden).

Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n →
      REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n)
Eqʰ n _∼_ f g = ∀ⁿʰ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs))

------------------------------------------------------------------------
-- Some lemmas

-- The functions curryⁿ and _$ⁿ_ are inverses.

left-inverse : ∀ {n a b} {A : Set a} {B : Set b} (f : Vec A n → B) →
               ∀ xs → curryⁿ f $ⁿ xs ≡ f xs
left-inverse f []       = refl
left-inverse f (x ∷ xs) = left-inverse (f ∘ _∷_ x) xs

right-inverse : ∀ {a b} {A : Set a} {B : Set b} n (f : N-ary n A B) →
                Eq n _≡_ (curryⁿ (_$ⁿ_ {n} f)) f
right-inverse zero    f = refl
right-inverse (suc n) f = λ x → right-inverse n (f x)

-- ∀ⁿ can be expressed in an "uncurried" way.

uncurry-∀ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} →
             ∀ⁿ n P ⇔ (∀ (xs : Vec A n) → P $ⁿ xs)
uncurry-∀ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n)
  where
  ⇒ : ∀ n {P : N-ary n A (Set ℓ)} →
      ∀ⁿ n P → (∀ (xs : Vec A n) → P $ⁿ xs)
  ⇒ zero    p []       = p
  ⇒ (suc n) p (x ∷ xs) = ⇒ n (p x) xs

  ⇐ : ∀ n {P : N-ary n A (Set ℓ)} →
      (∀ (xs : Vec A n) → P $ⁿ xs) → ∀ⁿ n P
  ⇐ zero    p = p []
  ⇐ (suc n) p = λ x → ⇐ n (p ∘ _∷_ x)

-- ∃ⁿ can be expressed in an "uncurried" way.

uncurry-∃ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} →
             ∃ⁿ n P ⇔ (∃ λ (xs : Vec A n) → P $ⁿ xs)
uncurry-∃ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n)
  where
  ⇒ : ∀ n {P : N-ary n A (Set ℓ)} →
      ∃ⁿ n P → (∃ λ (xs : Vec A n) → P $ⁿ xs)
  ⇒ zero    p       = ([] , p)
  ⇒ (suc n) (x , p) = Prod.map (_∷_ x) id (⇒ n p)

  ⇐ : ∀ n {P : N-ary n A (Set ℓ)} →
      (∃ λ (xs : Vec A n) → P $ⁿ xs) → ∃ⁿ n P
  ⇐ zero    ([] , p)     = p
  ⇐ (suc n) (x ∷ xs , p) = (x , ⇐ n (xs , p))

-- Conversion preserves equality.

curryⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
              (_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) →
              (∀ xs → f xs ∼ g xs) →
              Eq n _∼_ (curryⁿ f) (curryⁿ g)
curryⁿ-cong {zero}  _∼_ f g hyp = hyp []
curryⁿ-cong {suc n} _∼_ f g hyp = λ x →
  curryⁿ-cong _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (λ xs → hyp (x ∷ xs))

curryⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
                (_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) →
                Eq n _∼_ (curryⁿ f) (curryⁿ g) →
                ∀ xs → f xs ∼ g xs
curryⁿ-cong⁻¹ _∼_ f g hyp []       = hyp
curryⁿ-cong⁻¹ _∼_ f g hyp (x ∷ xs) =
  curryⁿ-cong⁻¹ _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (hyp x) xs

appⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
            (_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) →
            Eq n _∼_ f g →
            (xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)
appⁿ-cong _∼_ f g hyp []       = hyp
appⁿ-cong _∼_ f g hyp (x ∷ xs) = appⁿ-cong _∼_ (f x) (g x) (hyp x) xs

appⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
              (_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) →
              ((xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) →
              Eq n _∼_ f g
appⁿ-cong⁻¹ {zero}  _∼_ f g hyp = hyp []
appⁿ-cong⁻¹ {suc n} _∼_ f g hyp = λ x →
  appⁿ-cong⁻¹ _∼_ (f x) (g x) (λ xs → hyp (x ∷ xs))

-- Eq and Eqʰ are equivalent.

Eq-to-Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
            n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} →
            Eq n _∼_ f g → Eqʰ n _∼_ f g
Eq-to-Eqʰ zero    _∼_ eq = eq
Eq-to-Eqʰ (suc n) _∼_ eq = Eq-to-Eqʰ n _∼_ (eq _)

Eqʰ-to-Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c}
            n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} →
            Eqʰ n _∼_ f g → Eq n _∼_ f g
Eqʰ-to-Eq zero    _∼_ eq = eq
Eqʰ-to-Eq (suc n) _∼_ eq = λ _ → Eqʰ-to-Eq n _∼_ eq