This file is indexed.

/usr/share/agda-stdlib/Reflection.agda is in agda-stdlib 0.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
------------------------------------------------------------------------
-- The Agda standard library
--
-- Support for reflection
------------------------------------------------------------------------

module Reflection where

open import Data.Bool as Bool using (Bool); open Bool.Bool
open import Data.List using (List); open Data.List.List
open import Data.Nat using (ℕ) renaming (_≟_ to _≟-ℕ_)
open import Data.Product
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.PropositionalEquality.TrustMe
open import Relation.Nullary
open import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product

------------------------------------------------------------------------
-- Names

-- Names.

postulate Name : Set

{-# BUILTIN QNAME Name #-}

private
  primitive
    primQNameEquality : Name → Name → Bool

-- Equality of names is decidable.

infix 4 _==_ _≟-Name_

private

  _==_ : Name → Name → Bool
  _==_ = primQNameEquality

_≟-Name_ : Decidable {A = Name} _≡_
s₁ ≟-Name s₂ with s₁ == s₂
... | true  = yes trustMe
... | false = no whatever
  where postulate whatever : _

------------------------------------------------------------------------
-- Terms

-- Is the argument visible (explicit), hidden (implicit), or an
-- instance argument?

data Visibility : Set where
  visible hidden instance : Visibility

{-# BUILTIN HIDING   Visibility #-}
{-# BUILTIN VISIBLE  visible    #-}
{-# BUILTIN HIDDEN   hidden     #-}
{-# BUILTIN INSTANCE instance   #-}

-- Arguments can be relevant or irrelevant.

data Relevance : Set where
  relevant irrelevant : Relevance

{-# BUILTIN RELEVANCE  Relevance  #-}
{-# BUILTIN RELEVANT   relevant   #-}
{-# BUILTIN IRRELEVANT irrelevant #-}

-- Arguments.

data Arg A : Set where
  arg : (v : Visibility) (r : Relevance) (x : A) → Arg A

{-# BUILTIN ARG    Arg #-}
{-# BUILTIN ARGARG arg #-}

-- Terms.

mutual
  data Term : Set where
    -- Variable applied to arguments.
    var     : (x : ℕ) (args : List (Arg Term)) → Term
    -- Constructor applied to arguments.
    con     : (c : Name) (args : List (Arg Term)) → Term
    -- Identifier applied to arguments.
    def     : (f : Name) (args : List (Arg Term)) → Term
    -- Different kinds of λ-abstraction.
    lam     : (v : Visibility) (t : Term) → Term
    -- Pi-type.
    pi      : (t₁ : Arg Type) (t₂ : Type) → Term
    -- A sort.
    sort    : Sort → Term
    -- Anything else.
    unknown : Term

  data Type : Set where
    el : (s : Sort) (t : Term) → Type

  data Sort : Set where
    -- A Set of a given (possibly neutral) level.
    set     : (t : Term) → Sort
    -- A Set of a given concrete level.
    lit     : (n : ℕ) → Sort
    -- Anything else.
    unknown : Sort

{-# BUILTIN AGDASORT            Sort    #-}
{-# BUILTIN AGDATYPE            Type    #-}
{-# BUILTIN AGDATERM            Term    #-}
{-# BUILTIN AGDATERMVAR         var     #-}
{-# BUILTIN AGDATERMCON         con     #-}
{-# BUILTIN AGDATERMDEF         def     #-}
{-# BUILTIN AGDATERMLAM         lam     #-}
{-# BUILTIN AGDATERMPI          pi      #-}
{-# BUILTIN AGDATERMSORT        sort    #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDATYPEEL          el      #-}
{-# BUILTIN AGDASORTSET         set     #-}
{-# BUILTIN AGDASORTLIT         lit     #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}

------------------------------------------------------------------------
-- Definitions

postulate
  -- Function definition.
  Function  : Set
  -- Data type definition.
  Data-type : Set
  -- Record type definition.
  Record    : Set

{-# BUILTIN AGDAFUNDEF    Function  #-}
{-# BUILTIN AGDADATADEF   Data-type #-}
{-# BUILTIN AGDARECORDDEF Record    #-}

-- Definitions.

data Definition : Set where
  function     : Function  → Definition
  data-type    : Data-type → Definition
  record′      : Record    → Definition
  constructor′ : Definition
  axiom        : Definition
  primitive′   : Definition

{-# BUILTIN AGDADEFINITION                Definition   #-}
{-# BUILTIN AGDADEFINITIONFUNDEF          function     #-}
{-# BUILTIN AGDADEFINITIONDATADEF         data-type    #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF       record′      #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR constructor′ #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE       axiom        #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE       primitive′   #-}

private
  primitive
    primQNameType        : Name → Type
    primQNameDefinition  : Name → Definition
    primDataConstructors : Data-type → List Name

-- The type of the thing with the given name.

type : Name → Type
type = primQNameType

-- The definition of the thing with the given name.

definition : Name → Definition
definition = primQNameDefinition

-- The constructors of the given data type.

constructors : Data-type → List Name
constructors = primDataConstructors

------------------------------------------------------------------------
-- Term equality is decidable

-- Boring helper functions.

private

  cong₂′ : ∀ {A B C : Set} (f : A → B → C) {x y u v} →
          x ≡ y × u ≡ v → f x u ≡ f y v
  cong₂′ f = uncurry (cong₂ f)

  cong₃′ : ∀ {A B C D : Set} (f : A → B → C → D) {x y u v r s} →
           x ≡ y × u ≡ v × r ≡ s → f x u r ≡ f y v s
  cong₃′ f (refl , refl , refl) = refl

  arg₁ : ∀ {A v v′ r r′} {x x′ : A} → arg v r x ≡ arg v′ r′ x′ → v ≡ v′
  arg₁ refl = refl

  arg₂ : ∀ {A v v′ r r′} {x x′ : A} → arg v r x ≡ arg v′ r′ x′ → r ≡ r′
  arg₂ refl = refl

  arg₃ : ∀ {A v v′ r r′} {x x′ : A} → arg v r x ≡ arg v′ r′ x′ → x ≡ x′
  arg₃ refl = refl

  cons₁ : ∀ {A : Set} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → x ≡ y
  cons₁ refl = refl

  cons₂ : ∀ {A : Set} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys
  cons₂ refl = refl

  var₁ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → x ≡ x′
  var₁ refl = refl

  var₂ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → args ≡ args′
  var₂ refl = refl

  con₁ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′
  con₁ refl = refl

  con₂ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → args ≡ args′
  con₂ refl = refl

  def₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′
  def₁ refl = refl

  def₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′
  def₂ refl = refl

  lam₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′
  lam₁ refl = refl

  lam₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′
  lam₂ refl = refl

  pi₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′
  pi₁ refl = refl

  pi₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′
  pi₂ refl = refl

  sort₁ : ∀ {x y} → sort x ≡ sort y → x ≡ y
  sort₁ refl = refl

  set₁ : ∀ {x y} → set x ≡ set y → x ≡ y
  set₁ refl = refl

  lit₁ : ∀ {x y} → lit x ≡ lit y → x ≡ y
  lit₁ refl = refl

  el₁ : ∀ {s s′ t t′} → el s t ≡ el s′ t′ → s ≡ s′
  el₁ refl = refl

  el₂ : ∀ {s s′ t t′} → el s t ≡ el s′ t′ → t ≡ t′
  el₂ refl = refl

_≟-Visibility_ : Decidable (_≡_ {A = Visibility})
visible  ≟-Visibility visible  = yes refl
hidden   ≟-Visibility hidden   = yes refl
instance ≟-Visibility instance = yes refl
visible  ≟-Visibility hidden   = no λ()
visible  ≟-Visibility instance = no λ()
hidden   ≟-Visibility visible  = no λ()
hidden   ≟-Visibility instance = no λ()
instance ≟-Visibility visible  = no λ()
instance ≟-Visibility hidden   = no λ()

_≟-Relevance_ : Decidable (_≡_ {A = Relevance})
relevant   ≟-Relevance relevant   = yes refl
irrelevant ≟-Relevance irrelevant = yes refl
relevant   ≟-Relevance irrelevant = no λ()
irrelevant ≟-Relevance relevant   = no λ()

mutual
  infix 4 _≟_ _≟-Args_ _≟-ArgType_

  _≟-ArgTerm_ : Decidable (_≡_ {A = Arg Term})
  arg e r a ≟-ArgTerm arg e′ r′ a′ =
    Dec.map′ (cong₃′ arg)
             < arg₁ , < arg₂ , arg₃ > >
             (e ≟-Visibility e′ ×-dec r ≟-Relevance r′ ×-dec a ≟ a′)

  _≟-ArgType_ : Decidable (_≡_ {A = Arg Type})
  arg e r a ≟-ArgType arg e′ r′ a′ =
    Dec.map′ (cong₃′ arg)
             < arg₁ , < arg₂ , arg₃ > >
             (e ≟-Visibility e′ ×-dec
              r ≟-Relevance r′  ×-dec
              a ≟-Type a′)

  _≟-Args_ : Decidable (_≡_ {A = List (Arg Term)})
  []       ≟-Args []       = yes refl
  (x ∷ xs) ≟-Args (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-ArgTerm y ×-dec xs ≟-Args ys)
  []       ≟-Args (_ ∷ _)  = no λ()
  (_ ∷ _)  ≟-Args []       = no λ()

  _≟_ : Decidable (_≡_ {A = Term})
  var x args ≟ var x′ args′ = Dec.map′ (cong₂′ var) < var₁ , var₂ > (x ≟-ℕ x′          ×-dec args ≟-Args args′)
  con c args ≟ con c′ args′ = Dec.map′ (cong₂′ con) < con₁ , con₂ > (c ≟-Name c′       ×-dec args ≟-Args args′)
  def f args ≟ def f′ args′ = Dec.map′ (cong₂′ def) < def₁ , def₂ > (f ≟-Name f′       ×-dec args ≟-Args args′)
  lam v t    ≟ lam v′ t′    = Dec.map′ (cong₂′ lam) < lam₁ , lam₂ > (v ≟-Visibility v′ ×-dec t ≟ t′)
  pi t₁ t₂   ≟ pi t₁′ t₂′   = Dec.map′ (cong₂′ pi)  < pi₁  , pi₂  > (t₁ ≟-ArgType t₁′  ×-dec t₂ ≟-Type t₂′)
  sort s     ≟ sort s′      = Dec.map′ (cong sort)  sort₁           (s ≟-Sort s′)
  unknown    ≟ unknown      = yes refl

  var x args ≟ con c args′ = no λ()
  var x args ≟ def f args′ = no λ()
  var x args ≟ lam v t     = no λ()
  var x args ≟ pi t₁ t₂    = no λ()
  var x args ≟ sort _      = no λ()
  var x args ≟ unknown     = no λ()
  con c args ≟ var x args′ = no λ()
  con c args ≟ def f args′ = no λ()
  con c args ≟ lam v t     = no λ()
  con c args ≟ pi t₁ t₂    = no λ()
  con c args ≟ sort _      = no λ()
  con c args ≟ unknown     = no λ()
  def f args ≟ var x args′ = no λ()
  def f args ≟ con c args′ = no λ()
  def f args ≟ lam v t     = no λ()
  def f args ≟ pi t₁ t₂    = no λ()
  def f args ≟ sort _      = no λ()
  def f args ≟ unknown     = no λ()
  lam v t    ≟ var x args  = no λ()
  lam v t    ≟ con c args  = no λ()
  lam v t    ≟ def f args  = no λ()
  lam v t    ≟ pi t₁ t₂    = no λ()
  lam v t    ≟ sort _      = no λ()
  lam v t    ≟ unknown     = no λ()
  pi t₁ t₂   ≟ var x args  = no λ()
  pi t₁ t₂   ≟ con c args  = no λ()
  pi t₁ t₂   ≟ def f args  = no λ()
  pi t₁ t₂   ≟ lam v t     = no λ()
  pi t₁ t₂   ≟ sort _      = no λ()
  pi t₁ t₂   ≟ unknown     = no λ()
  sort _     ≟ var x args  = no λ()
  sort _     ≟ con c args  = no λ()
  sort _     ≟ def f args  = no λ()
  sort _     ≟ lam v t     = no λ()
  sort _     ≟ pi t₁ t₂    = no λ()
  sort _     ≟ unknown     = no λ()
  unknown    ≟ var x args  = no λ()
  unknown    ≟ con c args  = no λ()
  unknown    ≟ def f args  = no λ()
  unknown    ≟ lam v t     = no λ()
  unknown    ≟ pi t₁ t₂    = no λ()
  unknown    ≟ sort _      = no λ()

  _≟-Type_ : Decidable (_≡_ {A = Type})
  el s t ≟-Type el s′ t′ = Dec.map′ (cong₂′ el) < el₁ , el₂ > (s ≟-Sort s′ ×-dec t ≟ t′)

  _≟-Sort_ : Decidable (_≡_ {A = Sort})
  set t   ≟-Sort set t′  = Dec.map′ (cong set) set₁ (t ≟ t′)
  lit n   ≟-Sort lit n′  = Dec.map′ (cong lit) lit₁ (n ≟-ℕ n′)
  unknown ≟-Sort unknown = yes refl
  set _   ≟-Sort lit _   = no λ()
  set _   ≟-Sort unknown = no λ()
  lit _   ≟-Sort set _   = no λ()
  lit _   ≟-Sort unknown = no λ()
  unknown ≟-Sort set _   = no λ()
  unknown ≟-Sort lit _   = no λ()