This file is indexed.

/usr/share/doc/freefem++/examples/examples++-tutorial/sparse-cmatrix.edp is in freefem++-doc 3.19.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//  sparse matrix test  ---
// example of the new matrix feature in version 1.40
// -------------------------------------------------
mesh  TH = square(3,4);
mesh  th = square(2,3);
mesh  Th = square(4,4);

complex ccc;
ccc= 1;
cout << ccc << endl;
fespace VH(TH,P1);
fespace Vh(th,P1);
fespace Wh(Th,P1);

matrix RB= interpolate(VH,Vh);  // build interpolation matrix Vh->Vh 
matrix RBB= interpolate(Wh,Vh);  // build interpolation matrix
matrix<complex> B=RB;
B = B*(1+2i);

matrix<complex> BB=RBB;

varf vA(u,v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))+ int1d(Th)(u*v); 
matrix<complex> A=vA(Wh,Wh);
Vh<complex> ml=0;
cout << " ml " << ml[] << endl;
varf vML(u,v) = int2d(th)(1.*v);
ml[]=vML(0,Vh); // build the P1 mass lump of P1
cout << ml[] << endl;
matrix<complex> ML(ml[]); // matrix diagonal
cout << "ML="<<ML << endl;
cout << "B="<<B << endl;
matrix<complex> BML=B*ML; // a faire 
matrix<complex> tB=B';        //'; transpose and conjugate 
cout << "tB=" << tB << endl;
matrix<complex> MLtB=ML'*B'; // 

cout << "BML="<<BML << endl;
cout << "MLtB=" << MLtB << endl;

// WARNING if UMFPACK is not install
// the UMFPACK solver is replace by LU 
//  but LU need skyline matrix 
int typesolver=UMFPACK;
if(HaveUMFPACK) typesolver=GMRES; 
  set(A,solver=typesolver); // set a solver 

VH<complex> uH=0;
Vh<complex> uh=x+y+1i*(x-y);
uH[]= B*uh[];
Vh uHr = imag(uH);
plot(uHr,wait=1);
matrix<complex> BtA = BB'*A;//';
matrix<complex> BtAB = BtA*BB;
if(HaveUMFPACK)  
  set(BtAB,solver=UMFPACK);  
 else 
  set(BtAB,solver=GMRES);  
  Vh<complex> ff=1+1i;
Vh<complex> xx;
Vh xxr;
cout << " ------ " << endl;

xx[]=BtAB^-1*ff[];
cout << " ------ " << endl;
xx[]=BtAB^-1*ff[];
cout << " ------ " << endl;
xxr=imag(xx);
plot(xxr, wait=1);

{
  int N=10;
  complex [int,int] A(N,N);
  complex [int] a(N),b(N),bb(N);
  A =0;
  for (int i=0;i<N;i++)
    {
      A(i,i)=1.+i;
      if(i+1 < N)    A(i,i+1)=-i-1i*i;
      a[i]=i*(1.+2i);
    }
  b=A*a;
  
  cout << " b =" << b << endl ;
  cout << " a =" << a << endl ;
  cout << " b'*b (hermissian product) = " << b'*b << endl; //';
  cout << " a'*a = " << a'*a << endl;//';;
  assert( abs(imag(b'*b)) <1e-5);//')));
  cout << "xxxx\n"; 
  matrix<complex> sparseA=A;
  
  cout << sparseA << endl;
  sparseA = 2*sparseA+sparseA;
  sparseA = 4*sparseA+sparseA*(5+1i); //  * 27
  matrix<complex> sparseB=sparseA;//+sparseA+sparseA; ;
  cout << sparseA << endl;
  cout << sparseB << endl; // *81 
  cout << "sparseB = " << sparseB(0,0) << endl;
  // ajoute version  2.0-2
  sparseA=A;
  verbosity=4;
  if(HaveUMFPACK)		
    set(sparseA,solver=UMFPACK,tolpivot=1e-10,tolpivotsym=1e-9);  
  else 
    set(sparseA,solver=GMRES);  
  bb=sparseA^-1*a;
  verbosity=1;
  b = sparseA*bb;
  b -= a;
  cout << " nb coef sparseA " << sparseA.nbcoef << endl; 
  cout << " ||b.||_1  " << b.l1 << endl;
  cout << " ||b.||_2  " << b.l2 << endl;
  cout << " ||b.||_infty  " << b.linfty << endl;
  assert(b.l1 < 1e-10);
}
{// version 3.8    
  mesh Th=square(2,2);
  fespace Xh(Th,P1);
  varf vv(u,v)= int2d(Th)( ((2+1i)*u*v)')+int2d(Th)((3+2i)*v);//');
  varf vr(u,v)= int2d(Th)( u*v);//');

  matrix<complex> A=vv(Xh,Xh);
  matrix  Ar=vr(Xh,Xh);
  complex[int] vc=vv(0,Xh);
  real[int] vrr=vc.re,vii=vc.im;
  vrr=vc.re;
  vii=vc.im;
  cout << "vc[0] = " <<vc[0] << " = " << vc.re[0] << " +i " << vc.im[0] <<endl;
  cout << [ 1i, 1i]'*[ 1i, 1i] <<endl;//'; 
  // real part un complex par of matrix . 
  Ar = A.re;
  cout <<" A(0,0) = " << A(0,0)  << "   ";
  cout << " A.re(0.0) = " << Ar(0,0) << "   " ;
  Ar = A.im; 
  cout << " A.im(0.0) = " << Ar(0,0) << endl  ;

  
  macro Grada(u) [  phia*dx(u) + phiax*u ,dy(u) ]// ...
    func phia = exp(-2i*pi*x);
  func phiax = -2i*pi*exp(-2i*pi*x);

  varf va(u,v)= int2d(Th)( Grada(v)'*Grada(u) ) ;//');
  A = va(Xh,Xh);
  matrix<complex> At=A';
  cout << A(1,2)' << " ==  " << At(2,1) << endl;
  A = A+ (-1)*At;
  cout << A << endl;
  // copy and initialisation of complex matric with real matrix. 
 A = Ar; 
 matrix<complex> Ac=Ar; 



}