This file is indexed.

/usr/share/freemat/toolbox/general/diff.m is in freemat-data 4.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
% DIFF DIFF Difference Function
% 
% Usage
% 
% 
% 	y=diff(x)
% 	y=diff(x,k)
% 	y=diff(x,k,dim)
% 
%  Produce difference of successive vector elements.
%  
%  If x is a vector of length n, diff (x) is the
%  vector of first differences
%  \[
%   [x_2 - x_1, ..., x_n - x_{n-1}].
%  \]
% 
%  If x is a matrix, diff (x) is the matrix of column
%  differences along the first non-singleton dimension.
% 
%  The second argument is optional.  If supplied, diff (x,k),
%  where k is a nonnegative integer, returns the
%  k-th differences. It is possible that k is larger than
%  then first non-singleton dimension of the matrix. In this case,
%  diff continues to take the differences along the next
%  non-singleton dimension.
% 
%  The dimension along which to take the difference can be explicitly
%  stated with the optional variable dim. In this case the 
%  k-th order differences are calculated along this dimension.
%  In the case where k exceeds size (x, dim)
%  then an empty matrix is returned.
% 

% Copyright (C) 1995, 1996, 1999, 2000, 2002, 2004, 2005, 2006, 2007
%               Kurt Hornik
%%
%% Copyright (C) 2008 Samit Basu, Eugene Ingerman
%%
%% This file is adopted in FreeMat from Octave under the conditions of the GNU 
%% General Public License
%
%
% Octave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% Octave is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Octave; see the file COPYING.  If not, see
% <http://www.gnu.org/licenses/>.

% Author: KH <Kurt.Hornik@wu-wien.ac.at>
% Created: 2 February 1995
% Adapted-By: jwe

function x = diff (x, k, dim)

  if (nargin < 1 || nargin > 3)
    error('incorrect number of parameters');
  end

  if (nargin < 2 || isempty(k))
    k = 1;
  else
    if ( ~ (isscalar (k) && k == round (k) && k >= 0))
      error ('diff: k must be a nonnegative integer');
    elseif (k == 0)
      return;
    end
  end

  nd = ndims (x);
  sz = size (x);
  if (nargin ~= 3)
    %% Find the first non-singleton dimension
    dim  = 1;
    while (dim < nd + 1 && sz (dim) == 1)
      dim = dim + 1;
    end
    if (dim > nd)
      dim = 1;
    end
  else
    if (~ (isscalar (dim) && dim == round (dim)) && dim > 0 && dim < (nd + 1))
      error ('diff: dim must be an integer and valid dimension');
    end
  end

%  if (ischar (x))
%    error ('diff: symbolic differentiation not (yet) supported');
%  end


  if (nargin == 3)
    if (sz (dim) <= k)
      sz(dim) = 0;
      if (isa(x,'single'))
        x = zeros (sz,'single');
      else
        x = zeros(sz);
      end
    else
      n = sz (dim);
      idx1 = cell ();
      for i = 1:nd
		idx1{i} = 1:sz(i);
      end
      idx2 = idx1;
      for i = 1 : k;
		idx1{dim} = 2 : (n - i + 1);	
		idx2{dim} = 1 : (n - i);	
		x = x(idx1{:}) - x(idx2{:});
      end
    end
  else
    if (sum (sz - 1) < k)
      if (isa(x,'single'))
        x = single([]);
      else
        x = [];
      end;
    else
      idx1 = cell ();
      for i = 1:nd
		idx1{i} = 1:sz(i);
      end
      idx2 = idx1;
      while (k)
		n = sz (dim);
		for i = 1 : min (k, n - 1)
		  idx1{dim} = 2 : (n - i + 1);	
		  idx2{dim} = 1 : (n - i);	
		  x = x(idx1{:}) - x(idx2{:});
		end
		idx1{dim} = 1;
		idx2{dim} = 1;
		k = k - min (k, n - 1);
		dim = dim + 1;
      end
    end
  end