/usr/share/freemat/toolbox/graph/tubeplot.m is in freemat-data 4.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | % TUBEPLOT TUBEPLOT Creates a Tubeplot
%
% Usage
%
% This tubeplot function is from the tubeplot package
% written by Anders Sandberg. The simplest syntax for the
% tubeplot routine is
%
% tubeplot(x,y,z)
%
% plots the basic tube with radius 1, where x,y,z are
% vectors that describe the tube. If the radius of the
% tube is to be varied, use the second form
%
% tubeplot(x,y,z,r)
%
% which plots the basic tube with variable radius r (either
% a vector or a scalar value). The third form allows you
% to specify the coloring using a vector of values:
%
% tubeplot(x,y,z,r,v)
%
% where the coloring is now dependent on the values in the
% vector v. If you want to create a tube plot with
% a greater degree of tangential subdivisions (i.e.,
% the tube is more circular, use the form
%
% tubeplot(x,y,z,r,v,s)
%
% where s is the number of tangential subdivisions (default is 6)
% You can also use tubeplot to calculate matrices to feed to mesh
% and surf.
%
% [X,Y,Z]=tubeplot(x,y,z)
%
% returns N x 3 matrices suitable for mesh or surf.
%
% Note that the tube may pinch at points where the normal and binormal
% misbehaves. It is suitable for general space curves, not ones that
% contain straight sections. Normally the tube is calculated using the
% Frenet frame, making the tube minimally twisted except at inflexion points.
%
% To deal with this problem there is an alternative frame:
%
% tubeplot(x,y,z,r,v,s,vec)
%
% calculates the tube by setting the normal to
% the cross product of the tangent and the vector vec. If it is chosen so
% that it is always far from the tangent vector the frame will not twist unduly.
function [varargout]=tubeplot(x,y,z,varargin)
subdivs = 6;
N=size(x,1);
if (N==1)
x=x';
y=y';
z=z';
N=size(x,1);
end
if (nargin == 3)
r=x*0+1;
else
r=varargin{1};
if (size(r,1)==1 && size(r,2)==1)
r=r*ones(N,1);
end
end
if (nargin > 5)
subdivs=varargin{3}+1;
end
if (nargin > 6)
vec=varargin{4};
[t,n,b]=frame(x,y,z,vec);
else
[t,n,b]=frenet(x,y,z);
end
X=zeros(N,subdivs);
Y=zeros(N,subdivs);
Z=zeros(N,subdivs);
theta=0:(2*pi/(subdivs-1)):(2*pi);
for i=1:N
X(i,:)=x(i) + r(i)*(n(i,1)*cos(theta) + b(i,1)*sin(theta));
Y(i,:)=y(i) + r(i)*(n(i,2)*cos(theta) + b(i,2)*sin(theta));
Z(i,:)=z(i) + r(i)*(n(i,3)*cos(theta) + b(i,3)*sin(theta));
end
if (nargout==0)
if (nargin > 4)
V=varargin{2};
if (size(V,1)==1)
V=V';
end
V=V*ones(1,subdivs);
surf(X,Y,Z,V);
else
surf(X,Y,Z);
end
else
varargout(1) = {X};
varargout(2) = {Y};
varargout(3) = {Z};
end
function [t,n,b]=frame(x,y,z,vec)
% FRAME Calculate a Frenet-like frame for a polygonal space curve
% [t,n,b]=frame(x,y,z,v) returns the tangent unit vector, a normal
% and a binormal of the space curve x,y,z. The curve may be a row or
% column vector, the frame vectors are each row vectors.
%
% This function calculates the normal by taking the cross product
% of the tangent with the vector v; if v is chosen so that it is
% always far from t the frame will not twist unduly.
%
% If two points coincide, the previous tangent and normal will be used.
%
% Written by Anders Sandberg, asa@nada.kth.se, 2005
N=size(x,1);
if (N==1)
x=x';
y=y';
z=z';
N=size(x,1);
end
t=zeros(N,3);
b=zeros(N,3);
n=zeros(N,3);
p=[x y z];
for i=2:(N-1)
t(i,:)=(p(i+1,:)-p(i-1,:));
tl=norm(t(i,:));
if (tl>0)
t(i,:)=t(i,:)/tl;
else
t(i,:)=t(i-1,:);
end
end
t(1,:)=p(2,:)-p(1,:);
t(1,:)=t(1,:)/norm(t(1,:));
t(N,:)=p(N,:)-p(N-1,:);
t(N,:)=t(N,:)/norm(t(N,:));
for i=2:(N-1)
n(i,:)=cross(t(i,:),vec);
nl=norm(n(i,:));
if (nl>0)
n(i,:)=n(i,:)/nl;
else
n(i,:)=n(i-1,:);
end
end
n(1,:)=cross(t(1,:),vec);
n(1,:)=n(1,:)/norm(n(1,:));
n(N,:)=cross(t(N,:),vec);
n(N,:)=n(N,:)/norm(n(N,:));
for i=1:N
b(i,:)=cross(t(i,:),n(i,:));
b(i,:)=b(i,:)/norm(b(i,:));
end
function [t,n,b]=frenet(x,y,z)
% FRENET Calculate the Frenet frame for a polygonal space curve
% [t,n,b]=frenet(x,y,z) returns the tangent unit vector, the normal
% and binormal of the space curve x,y,z. The curve may be a row or
% column vector, the frame vectors are each row vectors.
%
% If two points coincide, the previous tangent and normal will be used.
%
% Written by Anders Sandberg, asa@nada.kth.se, 2005
N=size(x,1);
if (N==1)
x=x';
y=y';
z=z';
N=size(x,1);
end
t=zeros(N,3);
b=zeros(N,3);
n=zeros(N,3);
p=[x y z];
for i=2:(N-1)
t(i,:)=(p(i+1,:)-p(i-1,:));
tl=norm(t(i,:));
if (tl>0)
t(i,:)=t(i,:)/tl;
else
t(i,:)=t(i-1,:);
end
end
t(1,:)=p(2,:)-p(1,:);
t(1,:)=t(1,:)/norm(t(1,:));
t(N,:)=p(N,:)-p(N-1,:);
t(N,:)=t(N,:)/norm(t(N,:));
for i=2:(N-1)
n(i,:)=(t(i+1,:)-t(i-1,:));
nl=norm(n(i,:));
if (nl>0)
n(i,:)=n(i,:)/nl;
else
n(i,:)=n(i-1,:);
end
end
n(1,:)=t(2,:)-t(1,:);
n(1,:)=n(1,:)/norm(n(1,:));
n(N,:)=t(N,:)-t(N-1,:);
n(N,:)=n(N,:)/norm(n(N,:));
for i=1:N
b(i,:)=cross(t(i,:),n(i,:));
b(i,:)=b(i,:)/norm(b(i,:));
end
|