/usr/share/perl5/Benchmark/Timer.pm is in libbenchmark-timer-perl 0.7102-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | package Benchmark::Timer;
require 5.005;
use strict;
use Carp;
use Time::HiRes qw( gettimeofday tv_interval );
use vars qw($VERSION);
$VERSION = sprintf "%d.%02d%02d", q/0.71.2/ =~ /(\d+)/g;
use constant BEFORE => 0;
use constant ELAPSED => 1;
use constant LASTTAG => 2;
use constant TAGS => 3;
use constant SKIP => 4;
use constant MINIMUM => 5;
use constant SKIPCOUNT => 6;
use constant CONFIDENCE => 7;
use constant ERROR => 8;
use constant STAT => 9;
# ------------------------------------------------------------------------
# Constructor
sub new {
my $class = shift;
my $self = [];
bless $self, $class;
return $self->reset(@_);
}
# ------------------------------------------------------------------------
# Public methods
sub reset {
my $self = shift;
my %args = @_;
$self->[BEFORE] = {}; # [ gettimeofday ] storage
$self->[ELAPSED] = {}; # elapsed fractional seconds
$self->[LASTTAG] = undef; # what the last tag was
$self->[TAGS] = []; # keep list of tags in order seen
$self->[SKIP] = 0; # how many samples to skip
$self->[MINIMUM] = 1; # the minimum number of trails to run
$self->[SKIPCOUNT] = {}; # trial skip storage
delete $self->[CONFIDENCE]; # confidence factor
delete $self->[ERROR]; # allowable error
delete $self->[STAT]; # stat objects for each tag
if(exists $args{skip}) {
croak 'argument skip must be a non-negative integer'
unless defined $args{skip}
and $args{skip} !~ /\D/
and int $args{skip} == $args{skip};
$self->[SKIP] = $args{skip};
delete $args{skip};
}
if(exists $args{minimum}) {
croak 'argument minimum must be a non-negative integer'
unless defined $args{minimum}
and $args{minimum} !~ /\D/
and int $args{minimum} == $args{minimum};
croak 'argument minimum must greater than or equal to skip'
unless defined $args{minimum}
and $args{minimum} >= $self->[SKIP];
$self->[MINIMUM] = $args{minimum};
delete $args{minimum};
}
my $confidence_is_valid =
(defined $args{confidence}
and $args{confidence} =~ /^\d*\.?\d*$/
and $args{confidence} > 0
and $args{confidence} < 100);
my $error_is_valid =
(defined $args{error}
and $args{error} =~ /^\d*\.?\d*$/
and $args{error} > 0
and $args{error} < 100);
if ($confidence_is_valid && !$error_is_valid ||
!$confidence_is_valid && $error_is_valid)
{
carp 'you must specify both confidence and error'
}
elsif ($confidence_is_valid && $error_is_valid)
{
$self->[CONFIDENCE] = $args{confidence};
delete $args{confidence};
$self->[ERROR] = $args{error};
delete $args{error};
# Demand load the module we need. We could just
# require people to install it...
croak 'Could not load the Statistics::PointEstimation module'
unless eval "require Statistics::PointEstimation";
}
if(%args) {
carp 'skipping unknown arguments';
}
return $self;
}
# In this routine we try hard to make the [ gettimeofday ] take place
# as late as possible to minimize Heisenberg problems. :)
sub start {
my $self = shift;
my $tag = shift || $self->[LASTTAG] || '_default';
$self->[LASTTAG] = $tag;
if(exists $self->[SKIPCOUNT]->{$tag}) {
if($self->[SKIPCOUNT]->{$tag} > 1) {
$self->[SKIPCOUNT]->{$tag}--;
} else {
$self->[SKIPCOUNT]->{$tag} = 0;
push @{$self->[BEFORE]->{$tag}}, [ gettimeofday ];
}
} else {
push @{$self->[TAGS]}, $tag;
$self->[SKIPCOUNT]->{$tag} = $self->[SKIP] + 1;
if($self->[SKIPCOUNT]->{$tag} > 1) {
$self->[SKIPCOUNT]->{$tag}--;
} else {
$self->[SKIPCOUNT]->{$tag} = 0;
$self->[BEFORE]->{$tag} = [ [ gettimeofday ] ]
}
}
}
sub stop {
my $after = [ gettimeofday ]; # minimize overhead
my $self = shift;
my $tag = shift || $self->[LASTTAG] || '_default';
croak 'must call $t->start($tag) before $t->stop($tag)'
unless exists $self->[SKIPCOUNT]->{$tag};
return if $self->[SKIPCOUNT]->{$tag} > 0;
my $i = exists $self->[ELAPSED]->{$tag} ?
scalar @{$self->[ELAPSED]->{$tag}} : 0;
my $before = $self->[BEFORE]->{$tag}->[$i];
croak 'timer out of sync' unless defined $before;
# Create a stats object if we need to
if (defined $self->[CONFIDENCE] && !defined $self->[STAT]->{$tag})
{
$self->[STAT]->{$tag} = Statistics::PointEstimation->new;
$self->[STAT]->{$tag}->set_significance($self->[CONFIDENCE]);
}
my $elapsed = tv_interval($before, $after);
if($i > 0) {
push @{$self->[ELAPSED]->{$tag}}, $elapsed;
} else {
$self->[ELAPSED]->{$tag} = [ $elapsed ];
}
$self->[STAT]->{$tag}->add_data($elapsed)
if defined $self->[STAT]->{$tag};
return $elapsed;
}
sub need_more_samples {
my $self = shift;
my $tag = shift || $self->[LASTTAG] || '_default';
carp 'You must set the confidence and error in order to use need_more_samples'
unless defined $self->[CONFIDENCE];
# In case this function is called before any trials are run
return 1
if !defined $self->[STAT]->{$tag} ||
$self->[STAT]->{$tag}->count < $self->[MINIMUM];
# For debugging
# printf STDERR "Average: %.5f +/- %.5f, Samples: %d\n",
# $self->[STAT]->{$tag}->mean(), $self->[STAT]->{$tag}->delta(),
# $self->[STAT]->{$tag}->count;
# printf STDERR "Percent Error: %.5f > %.5f\n",
# $self->[STAT]->{$tag}->delta() / $self->[STAT]->{$tag}->mean() * 100,
# $self->[ERROR];
return (($self->[STAT]->{$tag}->delta() / $self->[STAT]->{$tag}->mean() * 100) >
$self->[ERROR]);
}
sub report {
my $self = shift;
my $tag = shift || $self->[LASTTAG] || '_default';
unless(exists $self->[ELAPSED]->{$tag}) {
carp join ' ', 'tag', $tag, 'still running';
return;
}
return $self->_report($tag);
}
sub reports {
my $self = shift;
if (wantarray)
{
my @reports;
foreach my $tag (@{$self->[TAGS]}) {
push @reports, $tag;
push @reports, $self->report($tag);
}
return @reports;
}
else
{
my $report = '';
foreach my $tag (@{$self->[TAGS]}) {
$report .= $self->report($tag);
}
return $report;
}
}
sub _report {
my $self = shift;
my $tag = shift;
unless(exists $self->[ELAPSED]->{$tag}) {
return "Tag $tag is still running or has not completed its skipped runs, skipping\n";
}
my $report = '';
my @times = @{$self->[ELAPSED]->{$tag}};
my $n = scalar @times;
my $total = 0; $total += $_ foreach @times;
if ($n == 1)
{
$report .= sprintf "\%d trial of \%s (\%s total)\n",
$n, $tag, timestr($total);
}
else
{
$report .= sprintf "\%d trials of \%s (\%s total), \%s/trial\n",
$n, $tag, timestr($total), timestr($total / $n);
}
if (defined $self->[STAT]->{$tag})
{
my $delta = 0;
$delta = $self->[STAT]->{$tag}->delta()
if defined $self->[STAT]->{$tag}->delta();
$report .= sprintf "Error: +/- \%.5f with \%s confidence\n",
$delta, $self->[CONFIDENCE];
}
return $report;
}
sub result {
my $self = shift;
my $tag = shift || $self->[LASTTAG] || '_default';
unless(exists $self->[ELAPSED]->{$tag}) {
carp join ' ', 'tag', $tag, 'still running';
return;
}
my @times = @{$self->[ELAPSED]->{$tag}};
my $total = 0; $total += $_ foreach @times;
return $total / @times;
}
sub results {
my $self = shift;
my @results;
foreach my $tag (@{$self->[TAGS]}) {
push @results, $tag;
push @results, $self->result($tag);
}
return wantarray ? @results : \@results;
}
sub data {
my $self = shift;
my $tag = shift;
my @results;
if($tag) {
if(exists $self->[ELAPSED]->{$tag}) {
@results = @{$self->[ELAPSED]->{$tag}};
} else {
@results = ();
}
} else {
@results = map { ( $_ => $self->[ELAPSED]->{$_} || [] ) }
@{$self->[TAGS]};
}
return wantarray ? @results : \@results;
}
# ------------------------------------------------------------------------
# Internal utility subroutines
# timestr($sec) takes a floating-point number of seconds and formats
# it in a sensible way, commifying large numbers of seconds, and
# converting to milliseconds if it makes sense. Since Time::HiRes has
# at most microsecond resolution, no attempt is made to convert into
# anything below that. A unit string is appended to the number.
sub timestr {
my $sec = shift;
my $retstr;
if($sec >= 1_000) {
$retstr = commify(int $sec) . 's';
} elsif($sec >= 1) {
$retstr = sprintf $sec == int $sec ? '%ds' : '%0.3fs', $sec;
} elsif($sec >= 0.001) {
my $ms = $sec * 1_000;
$retstr = sprintf $ms == int $ms ? '%dms' : '%0.3fms', $ms;
} elsif($sec >= 0.000001) {
$retstr = sprintf '%dus', $sec * 1_000_000;
} else {
# I'll have whatever real-time OS she's having
$retstr = $sec . 's';
}
$retstr;
}
# commify($num) inserts a grouping comma according to en-US standards
# for numbers larger than 1000. For example, the integer 123456 would
# be written 123,456. Any fractional part is left untouched.
sub commify {
my $num = shift;
return unless $num =~ /\d/;
return $num if $num < 1_000;
my $ip = int $num;
my($fp) = ($num =~ /\.(\d+)/);
$ip =~ s/(\d\d\d)$/,$1/;
1 while $ip =~ s/(\d)(\d\d\d),/$1,$2,/;
return $fp ? join '.', $ip, $fp : $ip;
}
# ------------------------------------------------------------------------
# Return true for a valid Perl include
1;
# ---------------------------------------------------------------------------
=head1 NAME
Benchmark::Timer - Benchmarking with statistical confidence
=head1 SYNOPSIS
# Non-statistical usage
use Benchmark::Timer;
$t = Benchmark::Timer->new(skip => 1);
for(1 .. 1000) {
$t->start('tag');
&long_running_operation();
$t->stop('tag');
}
print $t->report;
# --------------------------------------------------------------------
# Statistical usage
use Benchmark::Timer;
$t = Benchmark::Timer->new(skip => 1, confidence => 97.5, error => 2);
while($t->need_more_samples('tag')) {
$t->start('tag');
&long_running_operation();
$t->stop('tag');
}
print $t->report;
=head1 DESCRIPTION
The Benchmark::Timer class allows you to time portions of code
conveniently, as well as benchmark code by allowing timings of repeated
trials. It is perfect for when you need more precise information about the
running time of portions of your code than the Benchmark module will give
you, but don't want to go all out and profile your code.
The methodology is simple; create a Benchmark::Timer object, and wrap portions
of code that you want to benchmark with C<start()> and C<stop()> method calls.
You can supply a tag to those methods if you plan to time multiple portions of
code. If you provide error and confidence values, you can also use
C<need_more_samples()> to determine, statistically, whether you need to
collect more data.
After you have run your code, you can obtain information about the running
time by calling the C<results()> method, or get a descriptive benchmark report
by calling C<report()>. If you run your code over multiple trials, the
average time is reported. This is wonderful for benchmarking time-critical
portions of code in a rigorous way. You can also optionally choose to skip any
number of initial trials to cut down on initial case irregularities.
=head1 METHODS
In all of the following methods, C<$tag> refers to the user-supplied name of
the code being timed. Unless otherwise specified, $tag defaults to the tag of
the last call to C<start()>, or "_default" if C<start()> was not previously
called with a tag.
=over 4
=item $t = Benchmark::Timer->new( [options] );
Constructor for the Benchmark::Timer object; returns a reference to a
timer object. Takes the following named arguments:
=over 4
=item skip
The number of trials (if any) to skip before recording timing information.
=item minimum
The minimum number of trials to run.
=item error
A percentage between 0 and 100 which indicates how much error you are willing
to tolerate in the average time measured by the benchmark. For example, a
value of 1 means that you want the reported average time to be within 1% of
the real average time. C<need_more_samples()> will use this value to determine
when it is okay to stop collecting data.
If you specify an error you must also specify a confidence.
=item confidence
A percentage between 0 and 100 which indicates how confident you want to be in
the error measured by the benchmark. For example, a value of 97.5 means that
you want to be 97.5% confident that the real average time is within the error
margin you have specified. C<need_more_samples()> will use this value to
compute the estimated error for the collected data, so that it can determine
when it is okay to stop.
If you specify a confidence you must also specify an error.
=back
=item $t->reset;
Reset the timer object to the pristine state it started in.
Erase all memory of tags and any previously accumulated timings.
Returns a reference to the timer object. It takes the same arguments
the constructor takes.
=item $t->start($tag);
Record the current time so that when C<stop()> is called, we can calculate an
elapsed time.
=item $t->stop($tag);
Record timing information. If $tag is supplied, it must correspond to one
given to a previously called C<start()> call. It returns the elapsed time in
milliseconds. C<stop()> croaks if the timer gets out of sync (e.g. the number
of C<start()>s does not match the number of C<stop()>s.)
=item $t->need_more_samples($tag);
Compute the estimated error in the average of the data collected thus far, and
return true if that error exceeds the user-specified error. If a $tag is
supplied, it must correspond to one given to a previously called C<start()>
call.
This routine assumes that the data are normally distributed.
=item $t->report($tag);
Returns a string containing a simple report on the collected timings for $tag.
This report contains the number of trials run, the total time taken, and, if
more than one trial was run, the average time needed to run one trial and
error information. C<report()> will complain (via a warning) if a tag is
still active.
=item $t->reports;
In a scalar context, returns a string containing a simple report on the
collected timings for all tags. The report is a concatenation of the
individual tag reports, in the original tag order. In an list context, returns
a hash keyed by tag and containing reports for each tag. The return value is
actually an array, so that the original tag order is preserved if you assign
to an array instead of a hash. C<reports()> will complain (via a warning) if a
tag is still active.
=item $t->result($tag);
Return the time it took for $tag to elapse, or the mean time it took for $tag
to elapse once, if $tag was used to time code more than once. C<result()> will
complain (via a warning) if a tag is still active.
=item $t->results;
Returns the timing data as a hash keyed on tags where each value is
the time it took to run that code, or the average time it took,
if that code ran more than once. In scalar context it returns a reference
to that hash. The return value is actually an array, so that the original
tag order is preserved if you assign to an array instead of a hash.
=item $t->data($tag), $t->data;
These methods are useful if you want to recover the full internal timing
data to roll your own reports.
If called with a $tag, returns the raw timing data for that $tag as
an array (or a reference to an array if called in scalar context). This is
useful for feeding to something like the Statistics::Descriptive package.
If called with no arguments, returns the raw timing data as a hash keyed
on tags, where the values of the hash are lists of timings for that
code. In scalar context, it returns a reference to that hash. As with
C<results()>, the data is internally represented as an array so you can
recover the original tag order by assigning to an array instead of a hash.
=back
=head1 BUGS
Benchmarking is an inherently futile activity, fraught with uncertainty
not dissimilar to that experienced in quantum mechanics. But things are a
little better if you apply statistics.
=head1 LICENSE
This code is distributed under the GNU General Public License (GPL). See the
file LICENSE in the distribution, http://www.opensource.org/gpl-license.html,
and http://www.opensource.org/.
=head1 AUTHOR
The original code (written before April 20, 2001) was written by Andrew Ho
E<lt>andrew@zeuscat.comE<gt>, and is copyright (c) 2000-2001 Andrew Ho.
Versions up to 0.5 are distributed under the same terms as Perl.
Maintenance of this module is now being done by David Coppit
E<lt>david@coppit.orgE<gt>.
=head1 SEE ALSO
L<Benchmark>, L<Time::HiRes>, L<Time::Stopwatch>, L<Statistics::Descriptive>
=cut
|