/usr/share/perl5/Bio/PopGen/PopStats.pm is in libbio-perl-perl 1.6.901-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | #
# BioPerl module for Bio::PopGen::PopStats
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Jason Stajich <jason-at-bioperl.org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::PopGen::PopStats - A collection of methods for calculating
statistics about a population or sets of populations
=head1 SYNOPSIS
use Bio::PopGen::PopStats;
my $stats = Bio::PopGen::PopStats->new(); # add -haploid => 1
# to process haploid data
=head1 DESCRIPTION
Calculate various population structure statistics, most notably Wright's Fst.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
https://redmine.open-bio.org/projects/bioperl/
=head1 AUTHOR - Jason Stajich
Email jason-at-bioperl.org
=head1 CONTRIBUTORS
Matthew Hahn, matthew.hahn-at-duke.edu
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
package Bio::PopGen::PopStats;
use strict;
# Object preamble - inherits from Bio::Root::Root
use base qw(Bio::Root::Root);
=head2 new
Title : new
Usage : my $obj = Bio::PopGen::PopStats->new();
Function: Builds a new Bio::PopGen::PopStats object
Returns : an instance of Bio::PopGen::PopStats
Args : -haploid => 1 (if want to use haploid calculations)
=cut
sub new {
my($class,@args) = @_;
my $self = $class->SUPER::new(@args);
my ($haploid) = $self->_rearrange([qw(HAPLOID)],@args);
if( $haploid ) { $self->haploid_status(1) }
return $self;
}
=head2 haploid_status
Title : haploid_status
Usage : $obj->haploid_status($newval)
Function: Boolean value for whether or not to do haploid
or diploid calculations, where appropriate
Returns : Boolean
Args : on set, new boolean value optional)
=cut
sub haploid_status{
my $self = shift;
return $self->{'haploid_status'} = shift if @_;
return $self->{'haploid_status'};
}
# Implementation provided my Matthew Hahn, massaged by Jason Stajich
=head2 Fst
Title : Fst
Usage : my $fst = $stats->Fst(\@populations,\@markernames)
Function: Calculate Wright's Fst based on a set of sub-populations
and specific markers
Returns : Fst value (a value between 0 and 1)
Args : Arrayref of populations to process
Arrayref of marker names to process
Note : Based on diploid method in Weir BS, Genetics Data Analysis II, 1996
page 178.
=cut
#' make emacs happy here
sub Fst {
my ($self,$populations,$markernames) = @_;
if( ! defined $populations ||
ref($populations) !~ /ARRAY/i ) {
$self->warn("Must provide a valid arrayref for populations");
return;
} elsif( ! defined $markernames ||
ref($markernames) !~ /ARRAY/i ) {
$self->warn("Must provide a valid arrayref for marker names");
return;
}
my $num_sub_pops = scalar @$populations;
if( $num_sub_pops < 2 ) {
$self->warn("Must provide at least 2 populations for this test, you provided $num_sub_pops");
return;
}
# This code assumes that pop 1 contains at least one of all the
# alleles - need to do some more work to insure that the complete
# set of alleles is seen.
my $Fst;
my ($TS_sub1,$TS_sub2);
foreach my $marker ( @$markernames ) {
# Get all the alleles from all the genotypes in all subpopulations
my %allAlleles;
foreach my $allele ( map { $_->get_Alleles() }
map { $_->get_Genotypes($marker) } @$populations ){
$allAlleles{$allele}++;
}
my @alleles = keys %allAlleles;
foreach my $allele_name ( @alleles ) {
my $avg_samp_size = 0; # n-bar
my $avg_allele_freq = 0; # p-tilda-A-dot
my $total_samples_squared = 0; #
my $sum_heterozygote = 0;
my @marker_freqs;
# Walk through each population, get the calculated allele frequencies
# for the marker, do some bookkeeping
foreach my $pop ( @$populations ) {
my $s = $pop->get_number_individuals($marker);
$avg_samp_size += $s;
$total_samples_squared += $s**2;
my $markerobj = $pop->get_Marker($marker);
if( ! defined $markerobj ) {
$self->warn("Could not derive Marker for $marker ".
"from population ". $pop->name);
return;
}
my $freq_homozygotes =
$pop->get_Frequency_Homozygotes($marker,$allele_name);
my %af = $markerobj->get_Allele_Frequencies();
my $all_freq = ( ($af{$allele_name} || 0));
$avg_allele_freq += $s * $all_freq;
$sum_heterozygote += (2 * $s)*( $all_freq - $freq_homozygotes);
push @marker_freqs, \%af;
}
my $total_samples = $avg_samp_size; # sum of n over i sub-populations
$avg_samp_size /= $num_sub_pops;
$avg_allele_freq /= $total_samples;
# n-sub-c
my $adj_samp_size = ( 1/ ($num_sub_pops - 1)) *
( $total_samples - ( $total_samples_squared/$total_samples));
my $variance = 0; # s-squared-sub-A
my $sum_variance = 0;
my $i = 0; # we have cached the marker info
foreach my $pop ( @$populations ) {
my $s = $pop->get_number_individuals($marker);
my %af = %{$marker_freqs[$i++]};
$sum_variance += $s * (( ($af{$allele_name} || 0) -
$avg_allele_freq)**2);
}
$variance = ( 1 / (( $num_sub_pops-1)*$avg_samp_size))*$sum_variance;
# H-tilda-A-dot
my $freq_heterozygote = ($sum_heterozygote / $total_samples);
if( $self->haploid_status ) {
# Haploid calculations
my $T_sub1 = $variance -
( ( 1/($avg_samp_size-1))*
( ($avg_allele_freq*(1-$avg_allele_freq))-
( (($num_sub_pops-1)/$num_sub_pops)*$variance)));
my $T_sub2 = ( (($adj_samp_size-1)/($avg_samp_size-1))*
$avg_allele_freq*(1-$avg_allele_freq) ) +
( 1 + ( (($num_sub_pops-1)*
($avg_samp_size-$adj_samp_size))/
($avg_samp_size - 1))) *
($variance/$num_sub_pops);
#to get total Fst from all alleles (if more than two) or all
#loci (if more than one), we need to calculate $T_sub1 and
#$T_sub2 for all alleles for all loci, sum, and then divide
#again to get Fst.
$TS_sub1 += $T_sub1;
$TS_sub2 += $T_sub2;
} else {
my $S_sub1 = $variance - ( (1/($avg_samp_size-1))*
( ($avg_allele_freq*
(1-$avg_allele_freq)) -
((($num_sub_pops-1)/$num_sub_pops)*
$variance)-0.25*$freq_heterozygote ) );
my $S_sub2 = ($avg_allele_freq*(1-$avg_allele_freq)) -
( ($avg_samp_size/($num_sub_pops*($avg_samp_size-1)))*
( ((($num_sub_pops*($avg_samp_size- $adj_samp_size))/
$avg_samp_size)*$avg_allele_freq*
(1-$avg_allele_freq)) -
( (1/$avg_samp_size)* (($avg_samp_size-1)+
($num_sub_pops-1)*
($avg_samp_size-
$adj_samp_size) )*$variance ) -
( (($num_sub_pops*($avg_samp_size-$adj_samp_size))/
(4*$avg_samp_size*$adj_samp_size))*
$freq_heterozygote ) ) );
my $S_sub3 = ($adj_samp_size/(2*$avg_samp_size))*
$freq_heterozygote;
#Again, to get the average over many alleles or many loci,
#we will have to run the above for each and then sum the $S
#variables and recalculate the F statistics
$TS_sub1 += $S_sub1;
$TS_sub2 += $S_sub2;
}
}
}
# $Fst_diploid = $S_sub1/$S_sub2;
#my $Fit_diploid = 1 - ($S_sub3/$S_sub2);
#my $Fis_diploid = ($Fit_diploid-$Fst_diploid)/(1-$Fst_diploid);
$Fst = $TS_sub1 / $TS_sub2;
return $Fst;
}
1;
|