This file is indexed.

/usr/share/perl5/Bio/PopGen/PopStats.pm is in libbio-perl-perl 1.6.901-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#
# BioPerl module for Bio::PopGen::PopStats
#
# Please direct questions and support issues to <bioperl-l@bioperl.org> 
#
# Cared for by Jason Stajich <jason-at-bioperl.org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::PopGen::PopStats - A collection of methods for calculating
statistics about a population or sets of populations

=head1 SYNOPSIS

  use Bio::PopGen::PopStats;
  my $stats = Bio::PopGen::PopStats->new(); # add -haploid => 1 
                                           # to process haploid data

=head1 DESCRIPTION

Calculate various population structure statistics, most notably Wright's Fst.

=head1 FEEDBACK

=head2 Mailing Lists

User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list.  Your participation is much appreciated.

  bioperl-l@bioperl.org                  - General discussion
  http://bioperl.org/wiki/Mailing_lists  - About the mailing lists

=head2 Support 

Please direct usage questions or support issues to the mailing list:

I<bioperl-l@bioperl.org>

rather than to the module maintainer directly. Many experienced and 
reponsive experts will be able look at the problem and quickly 
address it. Please include a thorough description of the problem 
with code and data examples if at all possible.

=head2 Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:

  https://redmine.open-bio.org/projects/bioperl/

=head1 AUTHOR - Jason Stajich

Email jason-at-bioperl.org

=head1 CONTRIBUTORS

Matthew Hahn, matthew.hahn-at-duke.edu

=head1 APPENDIX

The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _

=cut


# Let the code begin...


package Bio::PopGen::PopStats;
use strict;

# Object preamble - inherits from Bio::Root::Root



use base qw(Bio::Root::Root);

=head2 new

 Title   : new
 Usage   : my $obj = Bio::PopGen::PopStats->new();
 Function: Builds a new Bio::PopGen::PopStats object 
 Returns : an instance of Bio::PopGen::PopStats
 Args    : -haploid => 1 (if want to use haploid calculations)


=cut

sub new {
  my($class,@args) = @_;

  my $self = $class->SUPER::new(@args);
  my ($haploid) = $self->_rearrange([qw(HAPLOID)],@args);
  if( $haploid ) { $self->haploid_status(1) }
  return $self;
}


=head2 haploid_status

 Title   : haploid_status
 Usage   : $obj->haploid_status($newval)
 Function: Boolean value for whether or not to do haploid 
           or diploid calculations, where appropriate
 Returns : Boolean
 Args    : on set, new boolean value optional)


=cut

sub haploid_status{
    my $self = shift;
    return $self->{'haploid_status'} = shift if @_;
    return $self->{'haploid_status'};
}


# Implementation provided my Matthew Hahn, massaged by Jason Stajich

=head2 Fst

 Title   : Fst
 Usage   : my $fst = $stats->Fst(\@populations,\@markernames)
 Function: Calculate Wright's Fst based on a set of sub-populations
           and specific markers
 Returns : Fst value (a value between 0 and 1)
 Args    : Arrayref of populations to process
           Arrayref of marker names to process
 Note    : Based on diploid method in Weir BS, Genetics Data Analysis II, 1996
           page 178.

=cut

#' make emacs happy here
sub Fst {
   my ($self,$populations,$markernames) = @_;

   if( ! defined $populations || 
       ref($populations) !~ /ARRAY/i ) { 
       $self->warn("Must provide a valid arrayref for populations");
       return;
   } elsif( ! defined $markernames ||
	    ref($markernames) !~ /ARRAY/i ) {
       $self->warn("Must provide a valid arrayref for marker names");
       return;
   }
   my $num_sub_pops          = scalar @$populations;

   if( $num_sub_pops < 2 ) {
       $self->warn("Must provide at least 2 populations for this test, you provided $num_sub_pops");
       return;
   }

   # This code assumes that pop 1 contains at least one of all the
   # alleles - need to do some more work to insure that the complete 
   # set of alleles is seen.
   my $Fst;
   my ($TS_sub1,$TS_sub2);

   foreach my $marker ( @$markernames ) {
       # Get all the alleles from all the genotypes in all subpopulations
       my %allAlleles;
       foreach my $allele ( map { $_->get_Alleles() } 
			    map { $_->get_Genotypes($marker) } @$populations ){
	   $allAlleles{$allele}++;
       }
       my @alleles = keys %allAlleles;

       foreach my $allele_name ( @alleles ) {
	   my $avg_samp_size         = 0; # n-bar
	   my $avg_allele_freq       = 0; # p-tilda-A-dot

	   my $total_samples_squared = 0; # 
	   my $sum_heterozygote      = 0;

	   my @marker_freqs;

	   # Walk through each population, get the calculated allele frequencies
	   # for the marker, do some bookkeeping


	   foreach my $pop ( @$populations ) {
	       my $s = $pop->get_number_individuals($marker);

	       $avg_samp_size += $s;
	       $total_samples_squared += $s**2;

	       my $markerobj = $pop->get_Marker($marker);
	       if( ! defined $markerobj ) { 
		   $self->warn("Could not derive Marker for $marker ".
			       "from population ". $pop->name);
		   return;
	       }

	       my $freq_homozygotes = 
		   $pop->get_Frequency_Homozygotes($marker,$allele_name);
	       my %af = $markerobj->get_Allele_Frequencies();
	       my $all_freq = ( ($af{$allele_name} || 0));

	       $avg_allele_freq += $s * $all_freq;
	       $sum_heterozygote += (2 * $s)*( $all_freq - $freq_homozygotes);

	       push @marker_freqs, \%af;
	   }
	   my $total_samples =  $avg_samp_size;	# sum of n over i sub-populations
	   $avg_samp_size /= $num_sub_pops;
	   $avg_allele_freq /= $total_samples;

	   # n-sub-c
	   my $adj_samp_size = ( 1/ ($num_sub_pops - 1)) *
	       ( $total_samples - ( $total_samples_squared/$total_samples));

	   my $variance              = 0; # s-squared-sub-A
	   my $sum_variance          = 0;
	   my $i = 0;		# we have cached the marker info
	   foreach my $pop ( @$populations ) {
	       my $s = $pop->get_number_individuals($marker);
	       my %af = %{$marker_freqs[$i++]};
	       $sum_variance += $s * (( ($af{$allele_name} || 0) - 
					$avg_allele_freq)**2);
	   }
	   $variance = ( 1 / (( $num_sub_pops-1)*$avg_samp_size))*$sum_variance;

	   # H-tilda-A-dot
	   my $freq_heterozygote = ($sum_heterozygote / $total_samples);

	   if( $self->haploid_status ) {
	       # Haploid calculations

	       my $T_sub1 = $variance - 
		   ( ( 1/($avg_samp_size-1))*
		     ( ($avg_allele_freq*(1-$avg_allele_freq))-
		       ( (($num_sub_pops-1)/$num_sub_pops)*$variance)));
	       my $T_sub2 = ( (($adj_samp_size-1)/($avg_samp_size-1))*
			      $avg_allele_freq*(1-$avg_allele_freq) ) +
			      ( 1 + ( (($num_sub_pops-1)*
				       ($avg_samp_size-$adj_samp_size))/ 
				      ($avg_samp_size - 1))) * 
				      ($variance/$num_sub_pops);


	       #to get total Fst from all alleles (if more than two) or all
	       #loci (if more than one), we need to calculate $T_sub1 and
	       #$T_sub2 for all alleles for all loci, sum, and then divide
	       #again to get Fst.
	       $TS_sub1 += $T_sub1;
	       $TS_sub2 += $T_sub2;

	   } else { 
	       my $S_sub1 = $variance - ( (1/($avg_samp_size-1))*
					  ( ($avg_allele_freq*
					     (1-$avg_allele_freq)) - 
					    ((($num_sub_pops-1)/$num_sub_pops)*
					     $variance)-0.25*$freq_heterozygote ) );
	       my $S_sub2 = ($avg_allele_freq*(1-$avg_allele_freq)) - 
		   ( ($avg_samp_size/($num_sub_pops*($avg_samp_size-1)))*
		     ( ((($num_sub_pops*($avg_samp_size- $adj_samp_size))/
			 $avg_samp_size)*$avg_allele_freq*
			(1-$avg_allele_freq)) - 
		       ( (1/$avg_samp_size)* (($avg_samp_size-1)+
					      ($num_sub_pops-1)*
					      ($avg_samp_size-
					       $adj_samp_size) )*$variance ) - 
		       ( (($num_sub_pops*($avg_samp_size-$adj_samp_size))/
			  (4*$avg_samp_size*$adj_samp_size))*
			 $freq_heterozygote ) ) );

	       my $S_sub3 = ($adj_samp_size/(2*$avg_samp_size))*
		   $freq_heterozygote;

	       #Again, to get the average over many alleles or many loci,
	       #we will have to run the above for each and then sum the $S
	       #variables and recalculate the F statistics 
	       $TS_sub1 += $S_sub1;
	       $TS_sub2 += $S_sub2;
	   } 
       }
   }
   # $Fst_diploid = $S_sub1/$S_sub2;
   #my $Fit_diploid = 1 - ($S_sub3/$S_sub2);
   #my $Fis_diploid = ($Fit_diploid-$Fst_diploid)/(1-$Fst_diploid);
   $Fst = $TS_sub1 / $TS_sub2;

   return $Fst;
}

1;