/usr/share/perl5/Bio/PopGen/Statistics.pm is in libbio-perl-perl 1.6.901-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 | #
# BioPerl module for Bio::PopGen::Statistics
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Jason Stajich <jason-at-bioperl-dot-org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::PopGen::Statistics - Population Genetics statistical tests
=head1 SYNOPSIS
use Bio::PopGen::Statistics;
use Bio::AlignIO;
use Bio::PopGen::IO;
use Bio::PopGen::Simulation::Coalescent;
my $sim = Bio::PopGen::Simulation::Coalescent->new( -sample_size => 12);
my $tree = $sim->next_tree;
$sim->add_Mutations($tree,20);
my $stats = Bio::PopGen::Statistics->new();
my $individuals = [ $tree->get_leaf_nodes];
my $pi = $stats->pi($individuals);
my $D = $stats->tajima_D($individuals);
# Alternatively to do this on input data from
# See the tests in t/PopGen.t for more examples
my $parser = Bio::PopGen::IO->new(-format => 'prettybase',
-file => 't/data/popstats.prettybase');
my $pop = $parser->next_population;
# Note that you can also call the stats as a class method if you like
# the only reason to instantiate it (as above) is if you want
# to set the verbosity for debugging
$pi = Bio::PopGen::Statistics->pi($pop);
$theta = Bio::PopGen::Statistics->theta($pop);
# Pi and Theta also take additional arguments,
# see the documentation for more information
use Bio::PopGen::Utilities;
use Bio::AlignIO;
my $in = Bio::AlignIO->new(-file => 't/data/t7.aln',
-format => 'clustalw');
my $aln = $in->next_aln;
# get a population, each sequence is an individual and
# for the default case, every site which is not monomorphic
# is a 'marker'. Each individual will have a 'genotype' for the
# site which will be the specific base in the alignment at that
# site
my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment => $aln);
=head1 DESCRIPTION
This object is intended to provide implementations some standard
population genetics statistics about alleles in populations.
This module was previously named Bio::Tree::Statistics.
This object is a place to accumulate routines for calculating various
statistics from the coalescent simulation, marker/allele, or from
aligned sequence data given that you can calculate alleles, number of
segregating sites.
Currently implemented:
Fu and Li's D (fu_and_li_D)
Fu and Li's D* (fu_and_li_D_star)
Fu and Li's F (fu_and_li_F)
Fu and Li's F* (fu_and_li_F_star)
Tajima's D (tajima_D)
Watterson's theta (theta)
pi (pi) - number of pairwise differences
composite_LD (composite_LD)
McDonald-Kreitman (mcdonald_kreitman or MK)
Count based methods also exist in case you have already calculated the
key statistics (seg sites, num individuals, etc) and just want to
compute the statistic.
In all cases where a the method expects an arrayref of
L<Bio::PopGen::IndividualI> objects and L<Bio::PopGen::PopulationI>
object will also work.
=head2 REFERENCES
Fu Y.X and Li W.H. (1993) "Statistical Tests of Neutrality of
Mutations." Genetics 133:693-709.
Fu Y.X. (1996) "New Statistical Tests of Neutrality for DNA samples
from a Population." Genetics 143:557-570.
McDonald J, Kreitman M.
Tajima F. (1989) "Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism." Genetics 123:585-595.
=head2 CITING THIS WORK
Please see this reference for use of this implementation.
Stajich JE and Hahn MW "Disentangling the Effects of Demography and Selection in Human History." (2005) Mol Biol Evol 22(1):63-73.
If you use these Bio::PopGen modules please cite the Bioperl
publication (see FAQ) and the above reference.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
https://redmine.open-bio.org/projects/bioperl/
=head1 AUTHOR - Jason Stajich, Matthew Hahn
Email jason-at-bioperl-dot-org
Email matthew-dot-hahn-at-duke-dot-edu
McDonald-Kreitman implementation based on work by Alisha Holloway at
UC Davis.
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
package Bio::PopGen::Statistics;
use strict;
use constant {
in_label => 'ingroup',
out_label => 'outgroup',
non_syn => 'non_synonymous',
syn => 'synonymous',
default_codon_table => 1, # Standard Codon table
};
use Bio::MolEvol::CodonModel;
use List::Util qw(sum);
use base qw(Bio::Root::Root);
our $codon_table => default_codon_table;
our $has_twotailed => 0;
BEGIN {
eval { require Text::NSP::Measures::2D::Fisher2::twotailed };
if( $@ ) { $has_twotailed = 0; }
else { $has_twotailed = 1; }
}
=head2 new
Title : new
Usage : my $obj = Bio::PopGen::Statistics->new();
Function: Builds a new Bio::PopGen::Statistics object
Returns : an instance of Bio::PopGen::Statistics
Args : none
=cut
=head2 fu_and_li_D
Title : fu_and_li_D
Usage : my $D = $statistics->fu_and_li_D(\@ingroup,\@outgroup);
OR
my $D = $statistics->fu_and_li_D(\@ingroup,$extmutations);
Function: Fu and Li D statistic for a list of individuals
given an outgroup and the number of external mutations
(either provided or calculated from list of outgroup individuals)
Returns : decimal
Args : $individuals - array reference which contains ingroup individuals
(L<Bio::PopGen::Individual> or derived classes)
$extmutations - number of external mutations OR
arrayref of outgroup individuals
=cut
sub fu_and_li_D {
my ($self,$ingroup,$outgroup) = @_;
my ($seg_sites,$n,$ancestral,$derived) = (0,0,0,0);
if( ref($ingroup) =~ /ARRAY/i ) {
$n = scalar @$ingroup;
# pi - all pairwise differences
$seg_sites = $self->segregating_sites_count($ingroup);
} elsif( ref($ingroup) &&
$ingroup->isa('Bio::PopGen::PopulationI')) {
$n = $ingroup->get_number_individuals;
$seg_sites = $self->segregating_sites_count($ingroup);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D");
return 0;
}
if( $seg_sites <= 0 ) {
$self->warn("mutation total was not > 0, cannot calculate a Fu and Li D");
return 0;
}
if( ! defined $outgroup ) {
$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
return 0;
} elsif( ref($outgroup) ) {
($ancestral,$derived) = $self->derived_mutations($ingroup,$outgroup);
$ancestral = 0 unless defined $ancestral;
} else {
$ancestral = $outgroup;
}
return $self->fu_and_li_D_counts($n,$seg_sites,
$ancestral,$derived);
}
=head2 fu_and_li_D_counts
Title : fu_li_D_counts
Usage : my $D = $statistics->fu_and_li_D_counts($samps,$sites,
$external);
Function: Fu and Li D statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
number of external mutations (n_e)
=cut
sub fu_and_li_D_counts {
my ($self,$n,$seg_sites, $external_mut) = @_;
my $a_n = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $v = 1 + ( ( $a_n**2 / ( $b + $a_n**2 ) ) *
( $c - ( ( $n + 1) /
( $n - 1) ) ));
my $u = $a_n - 1 - $v;
($seg_sites - $a_n * $external_mut) /
sqrt( ($u * $seg_sites) + ($v * $seg_sites*$seg_sites));
}
=head2 fu_and_li_D_star
Title : fu_and_li_D_star
Usage : my $D = $statistics->fu_an_li_D_star(\@individuals);
Function: Fu and Li's D* statistic for a set of samples
Without an outgroup
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
#'
# fu_and_li_D*
sub fu_and_li_D_star {
my ($self,$individuals) = @_;
my ($seg_sites,$n,$singletons);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
$seg_sites = $self->segregating_sites_count($individuals);
$singletons = $self->singleton_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$seg_sites = $self->segregating_sites_count($pop);
$singletons = $self->singleton_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D_star");
return 0;
}
return $self->fu_and_li_D_star_counts($n,$seg_sites, $singletons);
}
=head2 fu_and_li_D_star_counts
Title : fu_li_D_star_counts
Usage : my $D = $statistics->fu_and_li_D_star_counts($samps,$sites,
$singletons);
Function: Fu and Li D statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
singletons (n_s)
=cut
sub fu_and_li_D_star_counts {
my ($self,$n,$seg_sites, $singletons) = @_;
my $a_n;
for(my $k = 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $a1 = $a_n + 1 / $n;
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $d = $c + ($n -2) / ($n - 1)**2 +
2 / ($n -1) *
( 1.5 - ( (2*$a1 - 3) / ($n -2) ) -
1 / $n );
my $v_star = ( ( ($n/($n-1) )**2)*$b + (($a_n**2)*$d) -
(2*( ($n*$a_n*($a_n+1)) )/(($n-1)**2)) ) /
(($a_n**2) + $b);
my $u_star = ( ($n/($n-1))*
($a_n - ($n/
($n-1)))) - $v_star;
return (($n / ($n - 1)) * $seg_sites -
$a_n * $singletons) /
sqrt( ($u_star * $seg_sites) + ($v_star * $seg_sites*$seg_sites));
}
=head2 fu_and_li_F
Title : fu_and_li_F
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F(\@ingroup,$ext_muts);
Function: Calculate Fu and Li's F on an ingroup with either the set of
outgroup individuals, or the number of external mutations
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
OR a L<Bio::PopGen::PopulationI> object
number of external mutations OR list of individuals for the outgroup
=cut
#'
sub fu_and_li_F {
my ($self,$ingroup,$outgroup) = @_;
my ($seg_sites,$pi,$n,$external,$internal);
if( ref($ingroup) =~ /ARRAY/i ) {
$n = scalar @$ingroup;
# pi - all pairwise differences
$pi = $self->pi($ingroup);
$seg_sites = $self->segregating_sites_count($ingroup);
} elsif( ref($ingroup) &&
$ingroup->isa('Bio::PopGen::PopulationI')) {
$n = $ingroup->get_number_individuals;
$pi = $self->pi($ingroup);
$seg_sites = $self->segregating_sites_count($ingroup);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to Fu and Li's F");
return 0;
}
if( ! defined $outgroup ) {
$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
return 0;
} elsif( ref($outgroup) ) {
($external,$internal) = $self->derived_mutations($ingroup,$outgroup);
} else {
$external = $outgroup;
}
$self->fu_and_li_F_counts($n,$pi,$seg_sites,$external);
}
=head2 fu_and_li_F_counts
Title : fu_li_F_counts
Usage : my $F = $statistics->fu_and_li_F_counts($samps,$pi,
$sites,
$external);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
external mutations (n_e)
=cut
sub fu_and_li_F_counts {
my ($self,$n,$pi,$seg_sites, $external) = @_;
my $a_n = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a_n += ( 1 / $k );
}
my $a1 = $a_n + (1 / $n );
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += ( 1 / $k**2 );
}
my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
( ( $n - 1) * ( $n - 2 ) ) );
my $v_F = ( $c + ( (2*(($n**2)+$n+3)) /
( (9*$n)*($n-1) ) ) -
(2/($n-1)) ) / ( ($a_n**2)+$b );
my $u_F = ( 1 + ( ($n+1)/(3*($n-1)) )-
( 4*( ($n+1)/(($n-1)**2) ))*
($a1 - ((2*$n)/($n+1))) ) /
$a_n - $v_F;
# warn("$v_F vf $u_F uf n = $n\n");
my $F = ($pi - $external) / ( sqrt( ($u_F*$seg_sites) +
($v_F*($seg_sites**2)) ) );
return $F;
}
=head2 fu_and_li_F_star
Title : fu_and_li_F_star
Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F_star(\@ingroup);
Function: Calculate Fu and Li's F* on an ingroup without an outgroup
It uses count of singleton alleles instead
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
OR
L<Bio::PopGen::PopulationI> object
=cut
#' keep my emacs happy
sub fu_and_li_F_star {
my ($self,$individuals) = @_;
my ($seg_sites,$pi,$n,$singletons);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
# pi - all pairwise differences
$pi = $self->pi($individuals);
$seg_sites = $self->segregating_sites_count($individuals);
$singletons = $self->singleton_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$pi = $self->pi($pop);
$seg_sites = $self->segregating_sites_count($pop);
$singletons = $self->singleton_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_F_star");
return 0;
}
return $self->fu_and_li_F_star_counts($n,
$pi,
$seg_sites,
$singletons);
}
=head2 fu_and_li_F_star_counts
Title : fu_li_F_star_counts
Usage : my $F = $statistics->fu_and_li_F_star_counts($samps,
$pi,$sites,
$singletons);
Function: Fu and Li F statistic for the raw counts of the number
of samples, sites, external and internal mutations
Returns : decimal number
Args : number of samples (N)
average pairwise differences (pi)
number of segregating sites (n)
singleton mutations (n_s)
=cut
sub fu_and_li_F_star_counts {
my ($self,$n,$pi,$seg_sites, $singletons) = @_;
if( $n <= 1 ) {
$self->warn("N must be > 1\n");
return;
}
if( $n == 2) {
return 0;
}
my $a_n = 0;
my $b = 0;
for(my $k= 1; $k < $n; $k++ ) {
$b += (1 / ($k**2));
$a_n += ( 1 / $k ); # Eq (2)
}
my $a1 = $a_n + (1 / $n );
# warn("a_n is $a_n a1 is $a1 n is $n b is $b\n");
# From Simonsen et al (1995) instead of Fu and Li 1993
my $v_F_star = ( (( 2 * $n ** 3 + 110 * $n**2 - (255 * $n) + 153)/
(9 * ($n ** 2) * ( $n - 1))) +
((2 * ($n - 1) * $a_n ) / $n ** 2) -
(8 * $b / $n) ) /
( ($a_n ** 2) + $b );
my $u_F_star = ((( (4* ($n**2)) + (19 * $n) + 3 - (12 * ($n + 1)* $a1)) /
(3 * $n * ( $n - 1))) / $a_n) - $v_F_star;
# warn("vf* = $v_F_star uf* = $u_F_star n = $n\n");
my $F_star = ( $pi - ($singletons*( ( $n-1) / $n)) ) /
sqrt ( $u_F_star*$seg_sites + $v_F_star*$seg_sites**2);
return $F_star;
}
=head2 tajima_D
Title : tajima_D
Usage : my $D = Bio::PopGen::Statistics->tajima_D(\@samples);
Function: Calculate Tajima's D on a set of samples
Returns : decimal number
Args : array ref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
#'
sub tajima_D {
my ($self,$individuals) = @_;
my ($seg_sites,$pi,$n);
if( ref($individuals) =~ /ARRAY/i ) {
$n = scalar @$individuals;
# pi - all pairwise differences
$pi = $self->pi($individuals);
$seg_sites = $self->segregating_sites_count($individuals);
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI')) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
$pi = $self->pi($pop);
$seg_sites = $self->segregating_sites_count($pop);
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D");
return 0;
}
$self->tajima_D_counts($n,$seg_sites,$pi);
}
=head2 tajima_D_counts
Title : tajima_D_counts
Usage : my $D = $statistics->tajima_D_counts($samps,$sites,$pi);
Function: Tajima's D statistic for the raw counts of the number
of samples, sites, and avg pairwise distances (pi)
Returns : decimal number
Args : number of samples (N)
number of segregating sites (n)
average pairwise differences (pi)
=cut
#'
sub tajima_D_counts {
my ($self,$n,$seg_sites,$pi) = @_;
my $a1 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a1 += ( 1 / $k );
}
my $a2 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a2 += ( 1 / $k**2 );
}
my $b1 = ( $n + 1 ) / ( 3* ( $n - 1) );
my $b2 = ( 2 * ( $n ** 2 + $n + 3) ) /
( ( 9 * $n) * ( $n - 1) );
my $c1 = $b1 - ( 1 / $a1 );
my $c2 = $b2 - ( ( $n + 2 ) /
( $a1 * $n))+( $a2 / $a1 ** 2);
my $e1 = $c1 / $a1;
my $e2 = $c2 / ( $a1**2 + $a2 );
my $denom = sqrt ( ($e1 * $seg_sites) + (( $e2 * $seg_sites) * ( $seg_sites - 1)));
return if $denom == 0;
my $D = ( $pi - ( $seg_sites / $a1 ) ) / $denom;
return $D;
}
=head2 pi
Title : pi
Usage : my $pi = Bio::PopGen::Statistics->pi(\@inds)
Function: Calculate pi (average number of pairwise differences) given
a list of individuals which have the same number of markers
(also called sites) as available from the get_Genotypes()
call in L<Bio::PopGen::IndividualI>
Returns : decimal number
Args : Arg1= array ref of L<Bio::PopGen::IndividualI> objects
which have markers/mutations. We expect all individuals to
have a marker - we will deal with missing data as a special case.
OR
Arg1= L<Bio::PopGen::PopulationI> object. In the event that
only allele frequency data is available, storing it in
Population object will make this available.
num sites [optional], an optional second argument (integer)
which is the number of sites, then pi returned is pi/site.
=cut
sub pi {
my ($self,$individuals,$numsites) = @_;
my (%data,%marker_total,@marker_names,$n);
if( ref($individuals) =~ /ARRAY/i ) {
# one possible argument is an arrayref of Bio::PopGen::IndividualI objs
@marker_names = $individuals->[0]->get_marker_names;
$n = scalar @$individuals;
# Here we are calculating the allele frequencies
foreach my $ind ( @$individuals ) {
if( ! $ind->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($ind)."\n");
return 0;
}
foreach my $m ( @marker_names ) {
foreach my $allele (map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$data{$m}->{$allele}++;
$marker_total{$m}++;
}
}
}
# while( my ($marker,$count) = each %marker_total ) {
# foreach my $c ( values %{$data{$marker}} ) {
# $c /= $count;
# }
# }
# %data will contain allele frequencies for each marker, allele
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI') ) {
my $pop = $individuals;
$n = $pop->get_number_individuals;
foreach my $marker( $pop->get_Markers ) {
push @marker_names, $marker->name;
#$data{$marker->name} = {$marker->get_Allele_Frequencies};
my @genotypes = $pop->get_Genotypes(-marker => $marker->name);
for my $al ( map { $_->get_Alleles} @genotypes ) {
$data{$marker->name}->{$al}++;
$marker_total{$marker->name}++;
}
}
} else {
$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI to pi");
}
# based on Kevin Thornton's code:
# http://molpopgen.org/software/libsequence/doc/html/PolySNP_8cc-source.html#l00152
# For now we assume that all individuals have the same markers
my ($diffcount,$totalcompare) = (0,0);
my $pi = 0;
while ( my ($marker,$markerdat) = each %data ) {
my $sampsize = $marker_total{$marker};
my $ssh = 0;
my @alleles = keys %$markerdat;
if ( $sampsize > 1 ) {
my $denom = $sampsize * ($sampsize - 1.0);
foreach my $al ( @alleles ) {
$ssh += ($markerdat->{$al} * ($markerdat->{$al} - 1)) / $denom;
}
$pi += 1.0 - $ssh;
}
}
$self->debug( "pi=$pi\n");
if( $numsites ) {
return $pi / $numsites;
} else {
return $pi;
}
}
=head2 theta
Title : theta
Usage : my $theta = Bio::PopGen::Statistics->theta($sampsize,$segsites);
Function: Calculates Watterson's theta from the sample size
and the number of segregating sites.
Providing the third parameter, total number of sites will
return theta per site.
This is also known as K-hat = K / a_n
Returns : decimal number
Args : sample size (integer),
num segregating sites (integer)
total sites (integer) [optional] (to calculate theta per site)
OR
provide an arrayref of the L<Bio::PopGen::IndividualI> objects
total sites (integer) [optional] (to calculate theta per site)
OR
provide an L<Bio::PopGen::PopulationI> object
total sites (integer)[optional]
=cut
#'
sub theta {
my $self = shift;
my ( $n, $seg_sites,$totalsites) = @_;
if( ref($n) =~ /ARRAY/i ) {
my $samps = $n;
$totalsites = $seg_sites; # only 2 arguments if one is an array
my %data;
my @marker_names = $samps->[0]->get_marker_names;
# we need to calculate number of polymorphic sites
$seg_sites = $self->segregating_sites_count($samps);
$n = scalar @$samps;
} elsif(ref($n) &&
$n->isa('Bio::PopGen::PopulationI') ) {
# This will handle the case when we pass in a PopulationI object
my $pop = $n;
$totalsites = $seg_sites; # shift the arguments over by one
$n = $pop->haploid_population->get_number_individuals;
$seg_sites = $self->segregating_sites_count($pop);
}
my $a1 = 0;
for(my $k= 1; $k < $n; $k++ ) {
$a1 += ( 1 / $k );
}
if( $totalsites ) { # 0 and undef are the same can't divide by them
$seg_sites /= $totalsites;
}
if( $a1 == 0 ) {
return 0;
}
return $seg_sites / $a1;
}
=head2 singleton_count
Title : singleton_count
Usage : my ($singletons) = Bio::PopGen::Statistics->singleton_count(\@inds)
Function: Calculate the number of mutations/alleles which only occur once in
a list of individuals for all sites/markers
Returns : (integer) number of alleles which only occur once (integer)
Args : arrayref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
sub singleton_count {
my ($self,$individuals) = @_;
my @inds;
if( ref($individuals) =~ /ARRAY/ ) {
@inds = @$individuals;
} elsif( ref($individuals) &&
$individuals->isa('Bio::PopGen::PopulationI') ) {
my $pop = $individuals;
@inds = $pop->get_Individuals();
unless( @inds ) {
$self->warn("Need to provide a population which has individuals loaded, not just a population with allele frequencies");
return 0;
}
} else {
$self->warn("Expected either a PopulationI object or an arrayref of IndividualI objects");
return 0;
}
# find number of sites where a particular allele is only seen once
my ($singleton_allele_ct,%sites) = (0);
# first collect all the alleles into a hash structure
foreach my $n ( @inds ) {
if( ! $n->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
return 0;
}
foreach my $g ( $n->get_Genotypes ) {
my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
foreach my $allele (@alleles ) {
$sites{$nm}->{$allele}++;
}
}
}
foreach my $site ( values %sites ) { # don't really care what the name is
foreach my $allelect ( values %$site ) { #
# find the sites which have an allele with only 1 copy
$singleton_allele_ct++ if( $allelect == 1 );
}
}
return $singleton_allele_ct;
}
# Yes I know that singleton_count and segregating_sites_count are
# basically processing the same data so calling them both is
# redundant, something I want to fix later but want to make things
# correct and simple first
=head2 segregating_sites_count
Title : segregating_sites_count
Usage : my $segsites = Bio::PopGen::Statistics->segregating_sites_count
Function: Gets the number of segregating sites (number of polymorphic sites)
Returns : (integer) number of segregating sites
Args : arrayref of L<Bio::PopGen::IndividualI> objects
OR
L<Bio::PopGen::PopulationI> object
=cut
# perhaps we'll change this in the future
# to return the actual segregating sites
# so one can use this to pull in the names of those sites.
# Would be trivial if it is useful.
sub segregating_sites_count {
my ($self,$individuals) = @_;
my $type = ref($individuals);
my $seg_sites = 0;
if( $type =~ /ARRAY/i ) {
my %sites;
foreach my $n ( @$individuals ) {
if( ! $n->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
return 0;
}
foreach my $g ( $n->get_Genotypes ) {
my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
foreach my $allele (@alleles ) {
$sites{$nm}->{$allele}++;
}
}
}
foreach my $site ( values %sites ) { # use values b/c we don't
# really care what the name is
# find the sites which >1 allele
$seg_sites++ if( keys %$site > 1 );
}
} elsif( $type && $individuals->isa('Bio::PopGen::PopulationI') ) {
foreach my $marker ( $individuals->haploid_population->get_Markers ) {
my @alleles = $marker->get_Alleles;
$seg_sites++ if ( scalar @alleles > 1 );
}
} else {
$self->warn("segregating_sites_count expects either a PopulationI object or a list of IndividualI objects");
return 0;
}
return $seg_sites;
}
=head2 heterozygosity
Title : heterozygosity
Usage : my $het = Bio::PopGen::Statistics->heterozygosity($sampsize,$freq1);
Function: Calculate the heterozgosity for a sample set for a set of alleles
Returns : decimal number
Args : sample size (integer)
frequency of one allele (fraction - must be less than 1)
[optional] frequency of another allele - this is only needed
in a non-binary allele system
Note : p^2 + 2pq + q^2
=cut
sub heterozygosity {
my ($self,$samp_size, $freq1,$freq2) = @_;
if( ! $freq2 ) { $freq2 = 1 - $freq1 }
if( $freq1 > 1 || $freq2 > 1 ) {
$self->warn("heterozygosity expects frequencies to be less than 1");
}
my $sum = ($freq1**2) + (($freq2)**2);
my $h = ( $samp_size*(1- $sum) ) / ($samp_size - 1) ;
return $h;
}
=head2 derived_mutations
Title : derived_mutations
Usage : my $ext = Bio::PopGen::Statistics->derived_mutations($ingroup,$outgroup);
Function: Calculate the number of alleles or (mutations) which are ancestral
and the number which are derived (occurred only on the tips)
Returns : array of 2 items - number of external and internal derived
mutation
Args : ingroup - L<Bio::PopGen::IndividualI>s arrayref OR
L<Bio::PopGen::PopulationI>
outgroup- L<Bio::PopGen::IndividualI>s arrayref OR
L<Bio::PopGen::PopulationI> OR
a single L<Bio::PopGen::IndividualI>
=cut
sub derived_mutations {
my ($self,$ingroup,$outgroup) = @_;
my (%indata,%outdata,@marker_names);
# basically we have to do some type checking
# if that perl were typed...
my ($itype,$otype) = (ref($ingroup),ref($outgroup));
return $outgroup unless( $otype ); # we expect arrayrefs or objects, nums
# are already the value we
# are searching for
# pick apart the ingroup
# get the data
if( ref($ingroup) =~ /ARRAY/i ) {
if( ! ref($ingroup->[0]) ||
! $ingroup->[0]->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for ingroup in external_mutations");
return 0;
}
# we assume that all individuals have the same markers
# i.e. that they are aligned
@marker_names = $ingroup->[0]->get_marker_names;
for my $ind ( @$ingroup ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles }
$ind->get_Genotypes($m) ) {
$indata{$m}->{$allele}++;
}
}
}
} elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI') ) {
@marker_names = $ingroup->get_marker_names;
for my $ind ( $ingroup->haploid_population->get_Individuals() ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$indata{$m}->{$allele}++;
}
}
}
} else {
$self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for ingroup in external_mutations");
return 0;
}
if( $otype =~ /ARRAY/i ) {
if( ! ref($outgroup->[0]) ||
! $outgroup->[0]->isa('Bio::PopGen::IndividualI') ) {
$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for outgroup in external_mutations");
return 0;
}
for my $ind ( @$outgroup ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles }
$ind->get_Genotypes($m) ) {
$outdata{$m}->{$allele}++;
}
}
}
} elsif( $otype->isa('Bio::PopGen::PopulationI') ) {
for my $ind ( $outgroup->haploid_population->get_Individuals() ) {
for my $m ( @marker_names ) {
for my $allele ( map { $_->get_Alleles}
$ind->get_Genotypes($m) ) {
$outdata{$m}->{$allele}++;
}
}
}
} else {
$self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for outgroup in external_mutations");
return 0;
}
# derived mutations are defined as
#
# ingroup (G A T)
# outgroup (A)
# derived mutations are G and T, A is the external mutation
# ingroup (A T)
# outgroup (C)
# derived mutations A,T no external/ancestral mutations
# ingroup (G A T)
# outgroup (A T)
# cannot determine
my ($internal,$external);
foreach my $marker ( @marker_names ) {
my @outalleles = keys %{$outdata{$marker}};
my @in_alleles = keys %{$indata{$marker}};
next if( @outalleles > 1 || @in_alleles == 1);
for my $allele ( @in_alleles ) {
if( ! exists $outdata{$marker}->{$allele} ) {
if( $indata{$marker}->{$allele} == 1 ) {
$external++;
} else {
$internal++;
}
}
}
}
return ($external, $internal);
}
=head2 composite_LD
Title : composite_LD
Usage : %matrix = Bio::PopGen::Statistics->composite_LD($population);
Function: Calculate the Linkage Disequilibrium
This is for calculating LD for unphased data.
Other methods will be appropriate for phased haplotype data.
Returns : Hash of Hashes - first key is site 1,second key is site 2
and value is LD for those two sites.
my $LDarrayref = $matrix{$site1}->{$site2};
my ($ldval, $chisquared) = @$LDarrayref;
Args : L<Bio::PopGen::PopulationI> or arrayref of
L<Bio::PopGen::IndividualI>s
Reference: Weir B.S. (1996) "Genetic Data Analysis II",
Sinauer, Sunderlanm MA.
=cut
sub composite_LD {
my ($self,$pop) = @_;
if( ref($pop) =~ /ARRAY/i ) {
if( ref($pop->[0]) && $pop->[0]->isa('Bio::PopGen::IndividualI') ) {
$pop = Bio::PopGen::Population->new(-individuals => @$pop);
} else {
$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
return ();
}
} elsif( ! ref($pop) || ! $pop->isa('Bio::PopGen::PopulationI') ) {
$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
return ();
}
my @marker_names = $pop->get_marker_names;
my @inds = $pop->get_Individuals;
my $num_inds = scalar @inds;
my (%lookup);
# calculate allele frequencies for each marker from the population
# use the built-in get_Marker to get the allele freqs
# we still need to calculate the genotype frequencies
foreach my $marker_name ( @marker_names ) {
my(%allelef);
foreach my $ind ( @inds ) {
my ($genotype) = $ind->get_Genotypes(-marker => $marker_name);
if( ! defined $genotype ) {
$self->warn("no genotype for marker $marker_name for individual ". $ind->unique_id. "\n");
next;
}
my @alleles = sort $genotype->get_Alleles;
next if( scalar @alleles != 2);
my $genostr = join(',', @alleles);
$allelef{$alleles[0]}++;
$allelef{$alleles[1]}++;
}
# we should check for cases where there > 2 alleles or
# only 1 allele and throw out those markers.
my @alleles = sort keys %allelef;
my $allele_count = scalar @alleles;
# test if site is polymorphic
if( $allele_count != 2) {
# only really warn if we're seeing multi-allele
$self->warn("Skipping $marker_name because it has $allele_count alleles (".join(',',@alleles)."), \ncomposite_LD will currently only work for biallelic markers") if $allele_count > 2;
next; # skip this marker
}
# Need to do something here to detect alleles which aren't
# a single character
if( length($alleles[0]) != 1 ||
length($alleles[1]) != 1 ) {
$self->warn("An individual has an allele which is not a single base, this is currently not supported in composite_LD - consider recoding the allele as a single character");
next;
}
# fix the call for allele 1 (A or B) and
# allele 2 (a or b) in terms of how we'll do the
# N square from Weir p.126
$self->debug( "$alleles[0] is 1, $alleles[1] is 2 for $marker_name\n");
$lookup{$marker_name}->{'1'} = $alleles[0];
$lookup{$marker_name}->{'2'} = $alleles[1];
}
@marker_names = sort keys %lookup;
my $site_count = scalar @marker_names;
# where the final data will be stored
my %stats_for_sites;
# standard way of generating pairwise combos
# LD is done by comparing all the pairwise site (marker)
# combinations and keeping track of the genotype and
# pairwise genotype (ie genotypes of the 2 sites) frequencies
for( my $i = 0; $i < $site_count - 1; $i++ ) {
my $site1 = $marker_names[$i];
for( my $j = $i+1; $j < $site_count ; $j++) {
my (%genotypes, %total_genotype_count,$total_pairwisegeno_count,
%pairwise_genotypes);
my $site2 = $marker_names[$j];
my (%allele_count,%allele_freqs) = (0,0);
foreach my $ind ( @inds ) {
# build string of genotype at site 1
my ($genotype1) = $ind->get_Genotypes(-marker => $site1);
my @alleles1 = sort $genotype1->get_Alleles;
# if an individual has only one available allele
# (has a blank or N for one of the chromosomes)
# we don't want to use it in our calculation
next unless( scalar @alleles1 == 2);
my $genostr1 = join(',', @alleles1);
# build string of genotype at site 2
my ($genotype2) = $ind->get_Genotypes(-marker => $site2);
my @alleles2 = sort $genotype2->get_Alleles;
my $genostr2 = join(',', @alleles2);
next unless( scalar @alleles2 == 2);
for (@alleles1) {
$allele_count{$site1}++;
$allele_freqs{$site1}->{$_}++;
}
$genotypes{$site1}->{$genostr1}++;
$total_genotype_count{$site1}++;
for (@alleles2) {
$allele_count{$site2}++;
$allele_freqs{$site2}->{$_}++;
}
$genotypes{$site2}->{$genostr2}++;
$total_genotype_count{$site2}++;
# We are using the $site1,$site2 to signify
# a unique key
$pairwise_genotypes{"$genostr1,$genostr2"}++;
# some individuals
$total_pairwisegeno_count++;
}
for my $site ( %allele_freqs ) {
for my $al ( keys %{ $allele_freqs{$site} } ) {
$allele_freqs{$site}->{$al} /= $allele_count{$site};
}
}
my $n = $total_pairwisegeno_count; # number of pairs of comparisons
# 'A' and 'B' are two loci or in our case site1 and site2
my $allele1_site1 = $lookup{$site1}->{'1'}; # this is the BigA allele
my $allele1_site2 = $lookup{$site2}->{'1'}; # this is the BigB allele
my $allele2_site1 = $lookup{$site1}->{'2'}; # this is the LittleA allele
my $allele2_site2 = $lookup{$site2}->{'2'}; # this is the LittleB allele
# AABB
my $N1genostr = join(",",( $allele1_site1, $allele1_site1,
$allele1_site2, $allele1_site2));
$self->debug(" [$site1,$site2](AABB) N1genostr=$N1genostr\n");
# AABb
my $N2genostr = join(",",( $allele1_site1, $allele1_site1,
$allele1_site2, $allele2_site2));
$self->debug(" [$site1,$site2](AABb) N2genostr=$N2genostr\n");
# AaBB
my $N4genostr = join(",",( $allele1_site1, $allele2_site1,
$allele1_site2, $allele1_site2));
$self->debug(" [$site1,$site2](AaBB) N4genostr=$N4genostr\n");
# AaBb
my $N5genostr = join(",",( $allele1_site1, $allele2_site1,
$allele1_site2, $allele2_site2));
$self->debug(" [$site1,$site2](AaBb) N5genostr=$N5genostr\n");
# count of AABB in
my $n1 = $pairwise_genotypes{$N1genostr} || 0;
# count of AABb in
my $n2 = $pairwise_genotypes{$N2genostr} || 0;
# count of AaBB in
my $n4 = $pairwise_genotypes{$N4genostr} || 0;
# count of AaBb in
my $n5 = $pairwise_genotypes{$N5genostr} || 0;
my $homozA_site1 = join(",", ($allele1_site1,$allele1_site1));
my $homozB_site2 = join(",", ($allele1_site2,$allele1_site2));
my $p_AA = ($genotypes{$site1}->{$homozA_site1} || 0) / $n;
my $p_BB = ($genotypes{$site2}->{$homozB_site2} || 0) / $n;
my $p_A = $allele_freqs{$site1}->{$allele1_site1} || 0; # an individual allele freq
my $p_a = 1 - $p_A;
my $p_B = $allele_freqs{$site2}->{$allele1_site2} || 0; # an individual allele freq
my $p_b = 1 - $p_B;
# variance of allele frequencies
my $pi_A = $p_A * $p_a;
my $pi_B = $p_B * $p_b;
# hardy weinberg
my $D_A = $p_AA - $p_A**2;
my $D_B = $p_BB - $p_B**2;
my $n_AB = 2*$n1 + $n2 + $n4 + 0.5 * $n5;
$self->debug("n_AB=$n_AB -- n1=$n1, n2=$n2 n4=$n4 n5=$n5\n");
my $delta_AB = (1 / $n ) * ( $n_AB ) - ( 2 * $p_A * $p_B );
$self->debug("delta_AB=$delta_AB -- n=$n, n_AB=$n_AB p_A=$p_A, p_B=$p_B\n");
$self->debug(sprintf(" (%d * %.4f) / ( %.2f + %.2f) * ( %.2f + %.2f) \n",
$n,$delta_AB**2, $pi_A, $D_A, $pi_B, $D_B));
my $chisquared;
eval { $chisquared = ( $n * ($delta_AB**2) ) /
( ( $pi_A + $D_A) * ( $pi_B + $D_B) );
};
if( $@ ) {
$self->debug("Skipping the site because the denom is 0.\nsite1=$site1, site2=$site2 : pi_A=$pi_A, pi_B=$pi_B D_A=$D_A, D_B=$D_B\n");
next;
}
# this will be an upper triangular matrix
$stats_for_sites{$site1}->{$site2} = [$delta_AB,$chisquared];
}
}
return %stats_for_sites;
}
=head2 mcdonald_kreitman
Title : mcdonald_kreitman
Usage : $Fstat = mcdonald_kreitman($ingroup, $outgroup);
Function: Calculates McDonald-Kreitman statistic based on a set of ingroup
individuals and an outgroup by computing the number of
differences at synonymous and non-synonymous sites
for intraspecific comparisons and with the outgroup
Returns : 2x2 table, followed by a hash reference indicating any
warning messages about the status of the alleles or codons
Args : -ingroup => L<Bio::PopGen::Population> object or
arrayref of L<Bio::PopGen::Individual>s
-outgroup => L<Bio::PopGen::Population> object or
arrayef of L<Bio::PopGen::Individual>s
-polarized => Boolean, to indicate if this should be
a polarized test. Must provide two individuals
as outgroups.
=cut
sub mcdonald_kreitman {
my ($self,@args) = @_;
my ($ingroup, $outgroup,$polarized) =
$self->_rearrange([qw(INGROUP OUTGROUP POLARIZED)],@args);
my $verbose = $self->verbose;
my $outgroup_count;
my $gapchar = '\-';
if( ref($outgroup) =~ /ARRAY/i ) {
$outgroup_count = scalar @$outgroup;
} elsif( UNIVERSAL::isa($outgroup,'Bio::PopGen::PopulationI') ) {
$outgroup_count = $outgroup->get_number_individuals;
} else {
$self->throw("Expected an ArrayRef of Individuals OR a Bio::PopGen::PopulationI");
}
if( $polarized ) {
if( $outgroup_count < 2 ) {
$self->throw("Need 2 outgroups with polarized option\n");
}
} elsif( $outgroup_count > 1 ) {
$self->warn(sprintf("%s outgroup sequences provided, but only first will be used",$outgroup_count ));
} elsif( $outgroup_count == 0 ) {
$self->throw("No outgroup sequence provided");
}
my $codon_path = Bio::MolEvol::CodonModel->codon_path;
my (%marker_names,%unique,@inds);
for my $p ( $ingroup, $outgroup) {
if( ref($p) =~ /ARRAY/i ) {
push @inds, @$p;
} else {
push @inds, $p->get_Individuals;
}
}
for my $i ( @inds ) {
if( $unique{$i->unique_id}++ ) {
$self->warn("Individual ". $i->unique_id. " is seen more than once in the ingroup or outgroup set\n");
}
for my $n ( $i->get_marker_names ) {
$marker_names{$n}++;
}
}
my @marker_names = keys %marker_names;
if( $marker_names[0] =~ /^(Site|Codon)/ ) {
# sort by site or codon number and do it in
# a schwartzian transformation baby!
@marker_names = map { $_->[1] }
sort { $a->[0] <=> $b->[0] }
map { [$_ =~ /^(?:Codon|Site)-(\d+)/, $_] } @marker_names;
}
my $num_inds = scalar @inds;
my %vals = ( 'ingroup' => $ingroup,
'outgroup' => $outgroup,
);
# Make the Codon Table type a parameter!
my $table = Bio::Tools::CodonTable->new(-id => $codon_table);
my @vt = qw(outgroup ingroup);
my %changes;
my %status;
my %two_by_two = ( 'fixed_N' => 0,
'fixed_S' => 0,
'poly_N' => 0,
'poly_S' => 0);
for my $codon ( @marker_names ) {
my (%codonvals);
my %all_alleles;
for my $t ( @vt ) {
my $outcount = 1;
for my $ind ( @{$vals{$t}} ) {
my @alleles = $ind->get_Genotypes($codon)->get_Alleles;
if( @alleles > 1 ) {
die;
# warn("$codon $codon saw ", scalar @alleles, " for ind ", $ind->unique_id, "\n");
} else {
my ($allele) = shift @alleles;
$all_alleles{$ind->unique_id} = $allele;
my $AA = $table->translate($allele);
next if( $AA eq 'X' || $AA eq '*' || $allele =~ /N/i);
my $label = $t;
if( $t eq 'outgroup' ) {
$label = $t.$outcount++;
}
$codonvals{$label}->{$allele}++;
$codonvals{all}->{$allele}++;
}
}
}
my $total = sum ( values %{$codonvals{'ingroup'}} );
next if( $total && $total < 2 ); # skip sites with < alleles
# process all the seen alleles (codons)
# this is a vertical slide through the alignment
if( keys %{$codonvals{all}} <= 1 ) {
# no changes or no VALID codons - monomorphic
} else {
# grab only the first outgroup codon (what to do with rest?)
my ($outcodon) = keys %{$codonvals{'outgroup1'}};
if( ! $outcodon ) {
$status{"no outgroup codon $codon"}++;
next;
}
my $out_AA = $table->translate($outcodon);
my ($outcodon2) = keys %{$codonvals{'outgroup2'}};
if( ($polarized && ($outcodon ne $outcodon2)) ||
$out_AA eq 'X' || $out_AA eq '*' ) {
# skip if outgroup codons are different
# (when polarized option is on)
# or skip if the outcodon is STOP or 'NNN'
if( $verbose > 0 ) {
$self->debug("skipping $out_AA and $outcodon $outcodon2\n");
}
$status{'outgroup codons different'}++;
next;
}
# check if ingroup is actually different from outgroup -
# if there are the same number of alleles when considering
# ALL or just the ingroup, then there is nothing new seen
# in the outgroup so it must be a shared allele (codon)
# so we just count how many total alleles were seen
# if this is the same as the number of alleles seen for just
# the ingroup then the outgroup presents no new information
my @ingroup_codons = keys %{$codonvals{'ingroup'}};
my $diff_from_out = ! exists $codonvals{'ingroup'}->{$outcodon};
if( $verbose > 0 ) {
$self->debug("alleles are in: ", join(",", @ingroup_codons),
" out: ", join(",", keys %{$codonvals{outgroup1}}),
" diff_from_out=$diff_from_out\n");
for my $ind ( sort keys %all_alleles ) {
$self->debug( "$ind\t$all_alleles{$ind}\n");
}
}
# are all the ingroup alleles the same and diferent from outgroup?
# fixed differences between species
if( $diff_from_out ) {
if( scalar @ingroup_codons == 1 ) {
# fixed differences
if( $outcodon =~ /^$gapchar/ ) {
$status{'outgroup codons with gaps'}++;
next;
} elsif( $ingroup_codons[0] =~ /$gapchar/) {
$status{'ingroup codons with gaps'}++;
next;
}
my $path = $codon_path->{uc $ingroup_codons[0].$outcodon};
$two_by_two{fixed_N} += $path->[0];
$two_by_two{fixed_S} += $path->[1];
if( $verbose > 0 ) {
$self->debug("ingroup is @ingroup_codons outcodon is $outcodon\n");
$self->debug("path is ",join(",",@$path),"\n");
$self->debug
(sprintf("%-15s fixeddiff - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,$ingroup_codons[0], $outcodon,$out_AA,
@$path, map { $two_by_two{$_} }
qw(fixed_N fixed_S poly_N poly_S)));
}
} else {
# polymorphic and all are different from outgroup
# Here we find the minimum number of NS subst
my ($Ndiff,$Sdiff) = (3,0); # most different path
for my $c ( @ingroup_codons ) {
next if( $c =~ /$gapchar/ || $outcodon =~ /$gapchar/);
my $path = $codon_path->{uc $c.$outcodon};
my ($tNdiff,$tSdiff) = @$path;
if( $path->[0] < $Ndiff ||
($tNdiff == $Ndiff &&
$tSdiff <= $Sdiff)) {
($Ndiff,$Sdiff) = ($tNdiff,$tSdiff);
}
}
$two_by_two{fixed_N} += $Ndiff;
$two_by_two{fixed_S} += $Sdiff;
if( @ingroup_codons > 2 ) {
$status{"more than 2 ingroup codons $codon"}++;
warn("more than 2 ingroup codons (@ingroup_codons)\n");
} else {
my $path = $codon_path->{uc join('',@ingroup_codons)};
$two_by_two{poly_N} += $path->[0];
$two_by_two{poly_S} += $path->[1];
if( $verbose > 0 ) {
$self->debug(sprintf("%-15s polysite_all - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,@$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S)));
}
}
}
} else {
my %unq = map { $_ => 1 } @ingroup_codons;
delete $unq{$outcodon};
my @unique_codons = keys %unq;
# calc path for diff add to poly
# Here we find the minimum number of subst bw
# codons
my ($Ndiff,$Sdiff) = (3,0); # most different path
for my $c ( @unique_codons ) {
my $path = $codon_path->{uc $c.$outcodon };
if( ! defined $path ) {
die " cannot get path for ", $c.$outcodon, "\n";
}
my ($tNdiff,$tSdiff) = @$path;
if( $path->[0] < $Ndiff ||
($tNdiff == $Ndiff &&
$tSdiff <= $Sdiff)) {
($Ndiff,$Sdiff) = ($tNdiff,$tSdiff);
}
}
if( @unique_codons == 2 ) {
my $path = $codon_path->{uc join('',@unique_codons)};
if( ! defined $path ) {
$self->throw("no path for @unique_codons\n");
}
$Ndiff += $path->[0];
$Sdiff += $path->[1];
}
$two_by_two{poly_N} += $Ndiff;
$two_by_two{poly_S} += $Sdiff;
if( $verbose > 0 ) {
$self->debug(sprintf("%-15s polysite - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,
$Ndiff, $Sdiff, map { $two_by_two{$_} }
qw(fixed_N fixed_S poly_N poly_S)));
}
}
}
}
return ( $two_by_two{'poly_N'},
$two_by_two{'fixed_N'},
$two_by_two{'poly_S'},
$two_by_two{'fixed_S'},
{%status});
}
*MK = \&mcdonald_kreitman;
=head2 mcdonald_kreitman_counts
Title : mcdonald_kreitman_counts
Usage : my $MK = $statistics->mcdonald_kreitman_counts(
N_poly -> integer of count of non-syn polymorphism
N_fix -> integer of count of non-syn fixed substitutions
S_poly -> integer of count of syn polymorphism
S_fix -> integer of count of syn fixed substitutions
);
Function:
Returns : decimal number
Args :
=cut
sub mcdonald_kreitman_counts {
my ($self,$Npoly,$Nfix,$Spoly,$Sfix) = @_;
if( $has_twotailed ) {
return &Text::NSP::Measures::2D::Fisher2::twotailed::calculateStatistic
(n11=>$Npoly,
n1p=>$Npoly+$Spoly,
np1=>$Npoly+$Nfix,
npp=>$Npoly+$Nfix+$Spoly+$Sfix);
} else {
$self->warn("cannot call mcdonald_kreitman_counts because no Fisher's exact is available - install Text::NSP::Measures::2D::Fisher2::twotailed");
return 0;
}
}
1;
|