/usr/share/liblouis/tables/marburg.ctb is in liblouis-data 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | # liblouis: Marburg maths Table for mathematics
#
# Based on the Linux screenreader BRLTTY, copyright (C) 1999-2006 by
# The BRLTTY Team
#
# Copyright (C) 2004, 2005, 2006
# ViewPlus Technologies, Inc. www.viewplus.com
# and
# JJB Software, Inc. www.jjb-software.com
# All rights reserved
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the Lesser or Library GNU General Public License
# as published by the
# Free Software Foundation; either version 3, or (at your option) any
# later version.
#
# This file is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Library GNU General Public License for more details.
#
# You should have received a copy of the Library GNU General Public
# License along with this program; see the file COPYING. If not, write
# to
# the Free Software Foundation, 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301, USA.
#
# Maintained by John J. Boyer john.boyer@jjb-software.com
# Updated 6-18-08 by Mike Sivill <mike.sivill@viewplus.com>
include marburg_single_cell_defs.cti
include marburg_unicode_defs.cti
# grouping definitions are character-definition rules
grouping mrow \x0001\x0002 1e,2e
grouping mfrac \x0003\x0004 3e,4e
grouping brackets \x0005\x0006 126,345
# Braille indicators
numsign 3456
capsign 6
begcaps 6-6
endcaps 6-3
singleletterital 4
singleletterbold 4
# litdigit opcodes must be in this table, not the single-cell table.
litdigit 0 245
litdigit 1 1
litdigit 2 12
litdigit 3 14
litdigit 4 145
litdigit 5 15
litdigit 6 124
litdigit 7 1245
litdigit 8 125
litdigit 9 24
# No letsign but endnum for letters a-j.
endnum a 56-1
endnum b 56-12
endnum c 56-14
endnum d 56-145
endnum e 56-15
endnum f 56-124
endnum g 56-1245
endnum h 56-125
endnum i 56-24
endnum j 56-245
# Ordinary translation entries
always = a-56-2356
always + a-56-235
always > a-135-a
always < a-246-a
always % 25-1234
always $ 256
always & 4-12346
always ~ 45-156
always ! 6-236
prepunc " 236
postpunc " 356
postpunc ' 3
always '' 36
always ''' 36-3
midnum , 3
postpunc , 6-2
always , 3
always # 35-2345 print number sign before number
always ( 126
always ) 345
pass2 [{mrow]@126/@345}mrow ?
pass2 @126[{mrow]/}mrow@345 ?
decpoint . 2
always ... 3-3-3
hyphen - 36
postpunc . 6-256
postpunc ; 6-23
postpunc : 6-25
postpunc ? 6-236
endnum % 4-356
midnum * 4-16
repeated \s 0
repeated \x00a0 a
# swap opcodes for replacement and testing.
swapcd dropped 0123456789 356,2,23,25,456,26,235,2356,236,35
swapdd upnum 245,1,12,14,145,15,124,1245,125,24 0,0,0,0,0,0,0,0,0,0
swapdd lownum 356,2,23,25,256,26,235,2356,236,35 0,0,0,0,0,0,0,0,0,0
# now we start doing the real work
# Correction rules
correct {mrow$ld1-20[}mrow] ?
correct "\eb"[{mrow]/}mrow"\ee" ?
context "\eb"[]$l"\ee" @56
context "\eb"[]","$l"\ee" @56
context {mfrac$d1-10[]"@456-34"$d1-10}mfrac #1=1
# context []"@456-34"$d1-10}mfrac #1=1
context []"@346"$d1-10"@12456" #1=1
context []"@16"$d1-10"@12456" #1=1
# context []"@146"$d1-10 #1=1
context #1=1$d1-10 #1=0%dropped
# exactdots opcodes for dot patterns in ukmaths.sem
exactdots @126
exactdots @345
exactdots @123456
exactdots @346
exactdots @16
exactdots @23456
exactdots @34
exactdots @456-34
exactdots @12456
exactdots @146
# Function names and abbreviations
word cos 1246-14
word grad 1246-1245
word cosh 1246-125-14
word sinh 1246-125-234
word tanh 1246-125-2345
word cosech 1246-125-126
word coth 1246-125-1256
word sech 1246-125-36
word log 1246-123
word sin 1246-234
word tan 1246-2345
word cosec 1246-126
word curl 1246-146
word div 1246-1456
word cot 1246-1256
word arccosh 1246-236-14
word arcsinh 1246-236-234
word arctanh 1246-236-2345
word arccosech 1246-236-126
word arccoth 1246-236-1256
word arcsech 1246-236-36
word sec 1246-36
word arccos 1246-4-14
word antilog 1246-4-123
word arcsin 1246-4-234
word arctan 1246-4-2345
word arccosec 1246-4-126
word arccot 1246-4-1256
word arcsec 1246-4-25
word colog 1246-45-123
# pass2 processing
pass2 [@3456]%lownum1-10 ?
pass2 [@456-34-3456]%lownum1-10 ?
# pass3 processing
pass3 @346%lownum1-10[@12456] ?
pass3 @16[%lownum1-10]@12456 *
pass3 {mfrac[@3456%upnum1-10%lownum1-10]}mfrac *
|