/usr/share/perl5/Math/Calculus/Differentiate.pm is in libmath-calculus-differentiate-perl 0.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 | # ########################################################################################
# A CALCULUS DIFFERENTIATION OBJECT
# An implementation of algebraic differentiation by Jonathan Worthington.
# Copyright (C) Jonathan Worthington 2004
# This module may be used and distributed under the same terms as Perl.
# ########################################################################################
package Math::Calculus::Differentiate;
use 5.006;
use Math::Calculus::Expression;
use strict;
our $VERSION = '0.3';
our @ISA = qw/Math::Calculus::Expression/;
=head1 NAME
Math::Calculus::Differentiate - Algebraic Differentiation Engine
=head1 SYNOPSIS
use Math::Calculus::Differentiate;
# Create an object.
my $exp = Math::Calculus::Differentiate->new;
# Set a variable and expression.
$exp->addVariable('x');
$exp->setExpression('x^2 + 5*x') or die $exp->getError;
# Differentiate and simplify.
$exp->differentiate or die $exp->getError;;
$exp->simplify or die $exp->getError;;
# Print the result.
print $exp->getExpression; # Prints 2*x + 5
=head1 DESCRIPTION
This module can take an algebraic expression, parse it into a tree structure, modify
the tree to give a representation of the differentiated function, simplify the tree
and turn the tree back into an output of the same form as the input.
It supports differentiation of expressions including the +, -, *, / and ^ (raise to
power) operators, bracketed expressions to enable correct precedence and the functions
ln, exp, sin, cos, tan, sec, cosec, cot, sinh, cosh, tanh, sech, cosech, coth, asin,
acos, atan, asinh, acosh and atanh.
=head1 EXPORT
None by default.
=head1 METHODS
=item new
$exp = Math::Calculus::Differentiate->new;
Creates a new instance of the differentiation engine, which can hold an individual
expression.
=item addVariable
$exp->addVariable('x');
Sets a certain named value in the expression as being a variable. A named value must be
an alphabetic chracter.
=item setExpression
$exp->setExpression('x^2 + 5*x);
Takes an expression in human-readable form and stores it internally as a tree structure,
checking it is a valid expression that the module can understand in the process. Note that
the engine is strict about syntax. For example, note above that you must write 5*x and not
just 5x. Whitespace is allowed in the expression, but does not have any effect on precedence.
If you require control of precedence, use brackets; bracketed expressions will always be
evaluated first, as you would normally expect. The module follows the BODMAS precedence
convention. Returns undef on failure and a true value on success.
=item getExpression
$expr = $exp->getExpression;
Returns a textaul, human readable representation of the expression that is being stored.
=cut
# Differentiate.
# ##############
=item differentiate
$exp->differentiate('x');
Differentiates the expression that was stored with setExpression with respect to the variable
passed as a parameter. Returns undef on failure and a true value on success.
=cut
sub differentiate {
# Get invocant and variable.
my ($self, $variable) = @_;
# Check variable is in the list of variables.
return undef unless grep { $_ eq $variable } @{$self->{'variables'}};
# Clear error and traceback, and pass control to the differentiate routine.
$self->{'error'} = $self->{'traceback'} = undef;
eval {
$self->{'expression'} = $self->differentiateTree($variable, $self->{'expression'});
};
# Return an appropriate value (or lack thereof...).
if ($self->{'error'}) {
return undef;
} else {
return 1;
}
}
=item simplify
$exp->simplify;
Attempts to simplify the expression that is stored internally. It is a very good idea to call
this after calling differentiate, as the tree will often not be in the most compact possible
form, and this will affect the readability of output from getExpression and the performance
of future calls to differentiate if you are intending to obtain higher derivatives. Returns
undef on failure and a true value on success.
=item getTraceback
$exp->getTraceback;
When setExpression and differentiate are called, a traceback is generated to describe
what these functions did. If an error occurs, this traceback can be extremely useful
in helping track down the source of the error.
=item getError
$exp->getError;
When any method other than getTraceback is called, the error message stored is cleared, and
then any errors that occur during the execution of the method are stored. If failure occurs,
call this method to get a textual representation of the error.
=head1 SEE ALSO
The author of this module has a website at L<http://www.jwcs.net/~jonathan/>, which has
the latest news about the module and a web-based frontend to allow you to test the module
out for yourself.
=head1 AUTHOR
Jonathan Worthington, E<lt>jonathan@jwcs.netE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2004 by Jonathan Worthington
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.8.1 or,
at your option, any later version of Perl 5 you may have available.
=cut
# ########################################################################################
# Private Methods
# ########################################################################################
# Differentiate Tree explores the current expression tree, recursively differentiating
# the branches of the tree.
# ########################################################################################
sub differentiateTree {
# Get invocant, variable and tree.
my ($self, $variable, $tree) = @_;
# Generate traceback.
$self->{'traceback'} .= "Parsing " . $self->prettyPrint($tree) . "\n";
# If we're at a node...
unless (ref $tree) {
# Is it the variable?
if ($tree eq $variable) {
# It goes to 1.
return 1;
# Or - the variable...
} elsif ($tree eq "-$variable") {
# It goes to -1.
return -1;
# Otherwise, it's a constant and goes to zero.
} else {
return 0;
}
} else {
# We've got a complex expression. Our actions from here depend on what the
# expression is.
# Addition or subtraction - just differentiate each operand.
if ($tree->{'operation'} eq '+' || $tree->{'operation'} eq '-') {
return {
operation => $tree->{'operation'},
operand1 => $self->differentiateTree($variable, $tree->{'operand1'}),
operand2 => $self->differentiateTree($variable, $tree->{'operand2'})
};
# Multiplication.
} elsif ($tree->{'operation'} eq '*') {
# Check if any branches are constant.
my $o1c = $self->isConstant($variable, $tree->{'operand1'});
my $o2c = $self->isConstant($variable, $tree->{'operand2'});
# If they're both constant, return the tree as it is.
if ($o1c && $o2c) {
return $tree;
# If the first is constant, only differentiate the second.
} elsif ($o1c) {
return {
operation => $tree->{'operation'},
operand1 => $tree->{'operand1'},
operand2 => $self->differentiateTree($variable, $tree->{'operand2'})
};
# If the second is constant, only differentiate the first.
} elsif ($o2c) {
return {
operation => $tree->{'operation'},
operand1 => $self->differentiateTree($variable, $tree->{'operand1'}),
operand2 => $tree->{'operand2'}
};
# Otherwise, it's the product rule. d[uv] = udv + vdu
} else {
return {
operation => '+',
operand1 =>
{
operation => '*',
operand1 => $tree->{'operand1'},
operand2 => $self->differentiateTree($variable, $tree->{'operand2'})
},
operand2 =>
{
operation => '*',
operand1 => $tree->{'operand2'},
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
}
};
}
# Division.
} elsif ($tree->{'operation'} eq '/') {
# Check if any branches are constant.
my $o1c = $self->isConstant($variable, $tree->{'operand1'});
my $o2c = $self->isConstant($variable, $tree->{'operand2'});
# If they're both constant, return the tree as it is.
if ($o1c && $o2c) {
return $tree;
# If the denominator is constant, just differentiate the top.
} elsif ($o2c) {
return {
operation => '/',
operand1 => $self->differentiateTree($variable, $tree->{'operand1'}),
operand2 => $tree->{'operand2'}
};
# If the numerator is constant, e.g. k/u, then return k * d[u^-1].
} elsif ($o1c) {
my $uinv = {
operation => '^',
operand1 => $tree->{'operand2'},
operand2 => -1
};
return {
operation => '*',
operand1 => $tree->{'operand1'},
operand2 => $self->differentiateTree($variable, $uinv)
}
# Otherwise, neither is constant. Use d[u/v] = (vdu - udv) / v^2.
} else {
my $vdu = {
operation => '*',
operand2 => $tree->{'operand2'},
operand1 => $self->differentiateTree($variable, $tree->{'operand1'})
};
my $udv = {
operation => '*',
operand2 => $tree->{'operand1'},
operand1 => $self->differentiateTree($variable, $tree->{'operand2'})
};
return {
operation => '/',
operand1 =>
{
operation => '-',
operand1 => $vdu,
operand2 => $udv
},
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand2'},
operand2 => 2
}
};
}
# Powers.
} elsif ($tree->{'operation'} eq '^') {
# Check if any branches are constant.
my $o1c = $self->isConstant($variable, $tree->{'operand1'});
my $o2c = $self->isConstant($variable, $tree->{'operand2'});
# If they're both constant, return the tree as it is.
if ($o1c && $o2c) {
return $tree;
# If the power is constant...
} elsif ($o2c) {
# d[(f(x))^n] = n*f'(x)*f(x)^(n-1)
return {
operation => '*',
operand1 => $tree->{'operand2'},
operand2 =>
{
operation => '*',
operand1 => $self->differentiateTree($variable, $tree->{'operand1'}),
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 =>
{
operation => '-',
operand1 => $tree->{'operand2'},
operand2 => 1
}
}
}
};
# If the value being raised to a power is constant...
} elsif ($o1c) {
# d[k^v] = dv * ln(k) * exp(ln(k) * v)
my $dv = $self->differentiateTree($variable, $tree->{'operand2'});
my $lnk = {
operation => 'ln',
operand1 => $tree->{'operand1'},
operand2 => undef
};
return {
operation => '*',
operand1 => $dv,
operand2 =>
{
operation => '*',
operand1 => $lnk,
operand2 =>
{
operation => 'exp',
operand1 =>
{
operation => '*',
operand1 => $lnk,
operand2 => $tree->{'operand2'}
},
operand2 => undef
}
}
};
# If it's a function of the variable raised to another function of the variable...
} else {
# d[u^v] = exp(ln(u) * v) * ((vdu)/u + ln(u)dv)
my $lnu = {
operation => 'ln',
operand1 => $tree->{'operand1'},
operand2 => undef
};
my $dv = $self->differentiateTree($variable, $tree->{'operand2'});
my $vdu = {
operation => '*',
operand1 => $tree->{'operand2'},
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
return {
operation => '*',
operand1 =>
{
operation => 'exp',
operand1 =>
{
operation => '*',
operand1 => $lnu,
operand2 => $tree->{'operand2'}
},
operand2 => undef
},
operand2 =>
{
operation => '+',
operand1 =>
{
operation => '/',
operand1 => $vdu,
operand2 => $tree->{'operand1'}
},
operand2 =>
{
operation => '*',
operand1 => $lnu,
operand2 => $dv
}
}
};
}
# Natural logarithm
} elsif ($tree->{'operation'} =~ /^(\-?)ln$/) {
# Stash negativity.
my $neg = $1;
# d[ln(u)] = du/u
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => "${neg}1",
operand2 =>
{
operation => '/',
operand1 => $du,
operand2 => $tree->{'operand1'}
}
};
# Exponential (e)
} elsif ($tree->{'operation'} =~ /^(\-?)exp$/) {
# Stash negativity.
my $neg = $1;
# d[exp(u)] = exp(u)du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => $du,
operand2 => $tree
};
# sin
} elsif ($tree->{'operation'} =~ /^(\-?)sin$/) {
# Stash negativity.
my $neg = $1;
# d[sin(u)] = cos(u)du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => $du,
operand2 =>
{
operation => "${neg}cos",
operand1 => $tree->{'operand1'},
operand2 => undef
}
};
# cos
} elsif ($tree->{'operation'} =~ /^(\-?)cos$/) {
# Stash negativity.
my $neg = $1 eq '-' ? '' : '-';
# d[cos(u)] = -sin(u)du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => $du,
operand2 =>
{
operation => "${neg}sin",
operand1 => $tree->{'operand1'},
operand2 => undef
}
};
# tan
} elsif ($tree->{'operation'} =~ /^(\-?)tan$/) {
# Stash negativity.
my $neg = $1;
# d[tan(u)] = (sec(u))^2 * du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => "${neg}1",
operand2 =>
{
operation => '*',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => "sec",
operand1 => $tree->{'operand1'},
operand2 => undef
},
operand2 => 2
}
}
};
# sec
} elsif ($tree->{'operation'} =~ /^(\-?)sec$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/cos and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'cos',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# cosec
} elsif ($tree->{'operation'} =~ /^(\-?)cosec$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/sin and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'sin',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# cot
} elsif ($tree->{'operation'} =~ /^(\-?)cot$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/tan and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'tan',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# sinh
} elsif ($tree->{'operation'} =~ /^(\-?)sinh$/) {
# Stash negativity.
my $neg = $1;
# d[sinh(u)] = cosh(u)du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => $du,
operand2 =>
{
operation => "${neg}cosh",
operand1 => $tree->{'operand1'},
operand2 => undef
}
};
# cosh
} elsif ($tree->{'operation'} =~ /^(\-?)cosh$/) {
# Stash negativity.
my $neg = $1;
# d[cosh(u)] = sinh(u)du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => $du,
operand2 =>
{
operation => "${neg}sinh",
operand1 => $tree->{'operand1'},
operand2 => undef
}
};
# tanh
} elsif ($tree->{'operation'} =~ /^(\-?)tanh$/) {
# Stash negativity.
my $neg = $1;
# d[tanh(u)] = (sech(u))^2 * du
my $du = $self->differentiateTree($variable, $tree->{'operand1'});
return {
operation => '*',
operand1 => "${neg}1",
operand2 =>
{
operation => '*',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => "sech",
operand1 => $tree->{'operand1'},
operand2 => undef
},
operand2 => 2
}
}
};
# sech
} elsif ($tree->{'operation'} =~ /^(\-?)sech$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/cosh and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'cosh',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# cosech
} elsif ($tree->{'operation'} =~ /^(\-?)cosech$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/sinh and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'sinh',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# coth
} elsif ($tree->{'operation'} =~ /^(\-?)coth$/) {
# Stash negativity.
my $neg = $1;
# Convert to 1/tanh and differentiate.
return $self->differentiateTree($variable, {
operation => '/',
operand1 => "${neg}1",
operand2 =>
{
operation => 'tanh',
operand1 => $tree->{'operand1'},
operand2 => undef
}
});
# asin
} elsif ($tree->{'operation'} =~ /^(\-?)asin$/) {
# Stash negativity.
my $neg = $1;
# d[asin(u)] = du / (1 - u^2)^0.5
my $du;
if ($neg) {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
} else {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => '-',
operand1 => 1,
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
}
},
operand2 => 0.5
}
};
# acos
} elsif ($tree->{'operation'} =~ /^(\-?)acos$/) {
# Stash negativity.
my $neg = $1;
# d[acos(u)] = -du / (1 - u^2)^0.5
my $du;
if ($neg) {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
} else {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => '-',
operand1 => 1,
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
}
},
operand2 => 0.5
}
};
# atan
} elsif ($tree->{'operation'} =~ /^(\-?)atan$/) {
# Stash negativity.
my $neg = $1;
# d[atan(u)] = du / (1 + u^2)
my $du;
if ($neg) {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
} else {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '+',
operand1 => 1,
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
}
}
};
# asinh
} elsif ($tree->{'operation'} =~ /^(\-?)asinh$/) {
# Stash negativity.
my $neg = $1;
# d[asinh(u)] = du / (1 + u^2)^0.5
my $du;
if ($neg) {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
} else {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => '+',
operand1 => 1,
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
}
},
operand2 => 0.5
}
};
# acosh
} elsif ($tree->{'operation'} =~ /^(\-?)acosh$/) {
# Stash negativity.
my $neg = $1;
# d[acosh(u)] = du / (u^2 - 1)^0.5
my $du;
if ($neg) {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
} else {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '^',
operand1 =>
{
operation => '-',
operand1 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
},
operand2 => 1
},
operand2 => 0.5
}
};
# atanh
} elsif ($tree->{'operation'} =~ /^(\-?)atanh$/) {
# Stash negativity.
my $neg = $1;
# d[atanh(u)] = du / (1 - u^2)
my $du;
if ($neg) {
$du = {
operation => '-',
operand1 => '0',
operand2 => $self->differentiateTree($variable, $tree->{'operand1'})
};
} else {
$du = $self->differentiateTree($variable, $tree->{'operand1'});
}
return {
operation => '/',
operand1 => $du,
operand2 =>
{
operation => '-',
operand1 => 1,
operand2 =>
{
operation => '^',
operand1 => $tree->{'operand1'},
operand2 => 2
}
}
};
# Otherwise, we don't know what it is.
} else {
$self->{'error'} = "Could not differentiate " . $self->prettyPrint($tree);
die;
}
}
}
1;
|