/usr/share/perl5/Math/Complex.pm is in libmath-complex-perl 1.59-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 | #
# Complex numbers and associated mathematical functions
# -- Raphael Manfredi Since Sep 1996
# -- Jarkko Hietaniemi Since Mar 1997
# -- Daniel S. Lewart Since Sep 1997
#
package Math::Complex;
{ use 5.006; }
use strict;
our $VERSION = 1.59;
use Config;
our($Inf, $ExpInf);
BEGIN {
my %DBL_MAX =
(
4 => '1.70141183460469229e+38',
8 => '1.7976931348623157e+308',
# AFAICT the 10, 12, and 16-byte long doubles
# all have the same maximum.
10 => '1.1897314953572317650857593266280070162E+4932',
12 => '1.1897314953572317650857593266280070162E+4932',
16 => '1.1897314953572317650857593266280070162E+4932',
);
my $nvsize = $Config{nvsize} ||
($Config{uselongdouble} && $Config{longdblsize}) ||
$Config{doublesize};
die "Math::Complex: Could not figure out nvsize\n"
unless defined $nvsize;
die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n"
unless defined $DBL_MAX{$nvsize};
my $DBL_MAX = eval $DBL_MAX{$nvsize};
die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n"
unless defined $DBL_MAX;
my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this.
if ($^O eq 'unicosmk') {
$Inf = $DBL_MAX;
} else {
local $SIG{FPE} = { };
local $!;
# We do want an arithmetic overflow, Inf INF inf Infinity.
for my $t (
'exp(99999)', # Enough even with 128-bit long doubles.
'inf',
'Inf',
'INF',
'infinity',
'Infinity',
'INFINITY',
'1e99999',
) {
local $^W = 0;
my $i = eval "$t+1.0";
if (defined $i && $i > $BIGGER_THAN_THIS) {
$Inf = $i;
last;
}
}
$Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough.
die "Math::Complex: Could not get Infinity"
unless $Inf > $BIGGER_THAN_THIS;
$ExpInf = exp(99999);
}
# print "# On this machine, Inf = '$Inf'\n";
}
use Scalar::Util qw(set_prototype);
use warnings;
no warnings 'syntax'; # To avoid the (_) warnings.
BEGIN {
# For certain functions that we override, in 5.10 or better
# we can set a smarter prototype that will handle the lexical $_
# (also a 5.10+ feature).
if ($] >= 5.010000) {
set_prototype \&abs, '_';
set_prototype \&cos, '_';
set_prototype \&exp, '_';
set_prototype \&log, '_';
set_prototype \&sin, '_';
set_prototype \&sqrt, '_';
}
}
my $i;
my %LOGN;
# Regular expression for floating point numbers.
# These days we could use Scalar::Util::lln(), I guess.
my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
require Exporter;
our @ISA = qw(Exporter);
my @trig = qw(
pi
tan
csc cosec sec cot cotan
asin acos atan
acsc acosec asec acot acotan
sinh cosh tanh
csch cosech sech coth cotanh
asinh acosh atanh
acsch acosech asech acoth acotanh
);
our @EXPORT = (qw(
i Re Im rho theta arg
sqrt log ln
log10 logn cbrt root
cplx cplxe
atan2
),
@trig);
my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
our @EXPORT_OK = @pi;
our %EXPORT_TAGS = (
'trig' => [@trig],
'pi' => [@pi],
);
use overload
'=' => \&_copy,
'+=' => \&_plus,
'+' => \&_plus,
'-=' => \&_minus,
'-' => \&_minus,
'*=' => \&_multiply,
'*' => \&_multiply,
'/=' => \&_divide,
'/' => \&_divide,
'**=' => \&_power,
'**' => \&_power,
'==' => \&_numeq,
'<=>' => \&_spaceship,
'neg' => \&_negate,
'~' => \&_conjugate,
'abs' => \&abs,
'sqrt' => \&sqrt,
'exp' => \&exp,
'log' => \&log,
'sin' => \&sin,
'cos' => \&cos,
'atan2' => \&atan2,
'""' => \&_stringify;
#
# Package "privates"
#
my %DISPLAY_FORMAT = ('style' => 'cartesian',
'polar_pretty_print' => 1);
my $eps = 1e-14; # Epsilon
#
# Object attributes (internal):
# cartesian [real, imaginary] -- cartesian form
# polar [rho, theta] -- polar form
# c_dirty cartesian form not up-to-date
# p_dirty polar form not up-to-date
# display display format (package's global when not set)
#
# Die on bad *make() arguments.
sub _cannot_make {
die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
}
sub _make {
my $arg = shift;
my ($p, $q);
if ($arg =~ /^$gre$/) {
($p, $q) = ($1, 0);
} elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
($p, $q) = ($1 || 0, $2);
} elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
($p, $q) = ($1, $2 || 0);
}
if (defined $p) {
$p =~ s/^\+//;
$p =~ s/^(-?)inf$/"${1}9**9**9"/e;
$q =~ s/^\+//;
$q =~ s/^(-?)inf$/"${1}9**9**9"/e;
}
return ($p, $q);
}
sub _emake {
my $arg = shift;
my ($p, $q);
if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
($p, $q) = ($1, $2 || 0);
} elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
} elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
($p, $q) = ($1, 0);
} elsif ($arg =~ /^\s*$gre\s*$/) {
($p, $q) = ($1, 0);
}
if (defined $p) {
$p =~ s/^\+//;
$q =~ s/^\+//;
$p =~ s/^(-?)inf$/"${1}9**9**9"/e;
$q =~ s/^(-?)inf$/"${1}9**9**9"/e;
}
return ($p, $q);
}
sub _copy {
my $self = shift;
my $clone = {%$self};
if ($self->{'cartesian'}) {
$clone->{'cartesian'} = [@{$self->{'cartesian'}}];
}
if ($self->{'polar'}) {
$clone->{'polar'} = [@{$self->{'polar'}}];
}
bless $clone,__PACKAGE__;
return $clone;
}
#
# ->make
#
# Create a new complex number (cartesian form)
#
sub make {
my $self = bless {}, shift;
my ($re, $im);
if (@_ == 0) {
($re, $im) = (0, 0);
} elsif (@_ == 1) {
return (ref $self)->emake($_[0])
if ($_[0] =~ /^\s*\[/);
($re, $im) = _make($_[0]);
} elsif (@_ == 2) {
($re, $im) = @_;
}
if (defined $re) {
_cannot_make("real part", $re) unless $re =~ /^$gre$/;
}
$im ||= 0;
_cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
$self->_set_cartesian([$re, $im ]);
$self->display_format('cartesian');
return $self;
}
#
# ->emake
#
# Create a new complex number (exponential form)
#
sub emake {
my $self = bless {}, shift;
my ($rho, $theta);
if (@_ == 0) {
($rho, $theta) = (0, 0);
} elsif (@_ == 1) {
return (ref $self)->make($_[0])
if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
($rho, $theta) = _emake($_[0]);
} elsif (@_ == 2) {
($rho, $theta) = @_;
}
if (defined $rho && defined $theta) {
if ($rho < 0) {
$rho = -$rho;
$theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
}
}
if (defined $rho) {
_cannot_make("rho", $rho) unless $rho =~ /^$gre$/;
}
$theta ||= 0;
_cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
$self->_set_polar([$rho, $theta]);
$self->display_format('polar');
return $self;
}
sub new { &make } # For backward compatibility only.
#
# cplx
#
# Creates a complex number from a (re, im) tuple.
# This avoids the burden of writing Math::Complex->make(re, im).
#
sub cplx {
return __PACKAGE__->make(@_);
}
#
# cplxe
#
# Creates a complex number from a (rho, theta) tuple.
# This avoids the burden of writing Math::Complex->emake(rho, theta).
#
sub cplxe {
return __PACKAGE__->emake(@_);
}
#
# pi
#
# The number defined as pi = 180 degrees
#
sub pi () { 4 * CORE::atan2(1, 1) }
#
# pi2
#
# The full circle
#
sub pi2 () { 2 * pi }
#
# pi4
#
# The full circle twice.
#
sub pi4 () { 4 * pi }
#
# pip2
#
# The quarter circle
#
sub pip2 () { pi / 2 }
#
# pip4
#
# The eighth circle.
#
sub pip4 () { pi / 4 }
#
# _uplog10
#
# Used in log10().
#
sub _uplog10 () { 1 / CORE::log(10) }
#
# i
#
# The number defined as i*i = -1;
#
sub i () {
return $i if ($i);
$i = bless {};
$i->{'cartesian'} = [0, 1];
$i->{'polar'} = [1, pip2];
$i->{c_dirty} = 0;
$i->{p_dirty} = 0;
return $i;
}
#
# _ip2
#
# Half of i.
#
sub _ip2 () { i / 2 }
#
# Attribute access/set routines
#
sub _cartesian {$_[0]->{c_dirty} ?
$_[0]->_update_cartesian : $_[0]->{'cartesian'}}
sub _polar {$_[0]->{p_dirty} ?
$_[0]->_update_polar : $_[0]->{'polar'}}
sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
$_[0]->{'cartesian'} = $_[1] }
sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
$_[0]->{'polar'} = $_[1] }
#
# ->_update_cartesian
#
# Recompute and return the cartesian form, given accurate polar form.
#
sub _update_cartesian {
my $self = shift;
my ($r, $t) = @{$self->{'polar'}};
$self->{c_dirty} = 0;
return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
}
#
#
# ->_update_polar
#
# Recompute and return the polar form, given accurate cartesian form.
#
sub _update_polar {
my $self = shift;
my ($x, $y) = @{$self->{'cartesian'}};
$self->{p_dirty} = 0;
return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
CORE::atan2($y, $x)];
}
#
# (_plus)
#
# Computes z1+z2.
#
sub _plus {
my ($z1, $z2, $regular) = @_;
my ($re1, $im1) = @{$z1->_cartesian};
$z2 = cplx($z2) unless ref $z2;
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
unless (defined $regular) {
$z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
return $z1;
}
return (ref $z1)->make($re1 + $re2, $im1 + $im2);
}
#
# (_minus)
#
# Computes z1-z2.
#
sub _minus {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = @{$z1->_cartesian};
$z2 = cplx($z2) unless ref $z2;
my ($re2, $im2) = @{$z2->_cartesian};
unless (defined $inverted) {
$z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
return $z1;
}
return $inverted ?
(ref $z1)->make($re2 - $re1, $im2 - $im1) :
(ref $z1)->make($re1 - $re2, $im1 - $im2);
}
#
# (_multiply)
#
# Computes z1*z2.
#
sub _multiply {
my ($z1, $z2, $regular) = @_;
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
# if both polar better use polar to avoid rounding errors
my ($r1, $t1) = @{$z1->_polar};
my ($r2, $t2) = @{$z2->_polar};
my $t = $t1 + $t2;
if ($t > pi()) { $t -= pi2 }
elsif ($t <= -pi()) { $t += pi2 }
unless (defined $regular) {
$z1->_set_polar([$r1 * $r2, $t]);
return $z1;
}
return (ref $z1)->emake($r1 * $r2, $t);
} else {
my ($x1, $y1) = @{$z1->_cartesian};
if (ref $z2) {
my ($x2, $y2) = @{$z2->_cartesian};
return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
} else {
return (ref $z1)->make($x1*$z2, $y1*$z2);
}
}
}
#
# _divbyzero
#
# Die on division by zero.
#
sub _divbyzero {
my $mess = "$_[0]: Division by zero.\n";
if (defined $_[1]) {
$mess .= "(Because in the definition of $_[0], the divisor ";
$mess .= "$_[1] " unless ("$_[1]" eq '0');
$mess .= "is 0)\n";
}
my @up = caller(1);
$mess .= "Died at $up[1] line $up[2].\n";
die $mess;
}
#
# (_divide)
#
# Computes z1/z2.
#
sub _divide {
my ($z1, $z2, $inverted) = @_;
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
# if both polar better use polar to avoid rounding errors
my ($r1, $t1) = @{$z1->_polar};
my ($r2, $t2) = @{$z2->_polar};
my $t;
if ($inverted) {
_divbyzero "$z2/0" if ($r1 == 0);
$t = $t2 - $t1;
if ($t > pi()) { $t -= pi2 }
elsif ($t <= -pi()) { $t += pi2 }
return (ref $z1)->emake($r2 / $r1, $t);
} else {
_divbyzero "$z1/0" if ($r2 == 0);
$t = $t1 - $t2;
if ($t > pi()) { $t -= pi2 }
elsif ($t <= -pi()) { $t += pi2 }
return (ref $z1)->emake($r1 / $r2, $t);
}
} else {
my ($d, $x2, $y2);
if ($inverted) {
($x2, $y2) = @{$z1->_cartesian};
$d = $x2*$x2 + $y2*$y2;
_divbyzero "$z2/0" if $d == 0;
return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
} else {
my ($x1, $y1) = @{$z1->_cartesian};
if (ref $z2) {
($x2, $y2) = @{$z2->_cartesian};
$d = $x2*$x2 + $y2*$y2;
_divbyzero "$z1/0" if $d == 0;
my $u = ($x1*$x2 + $y1*$y2)/$d;
my $v = ($y1*$x2 - $x1*$y2)/$d;
return (ref $z1)->make($u, $v);
} else {
_divbyzero "$z1/0" if $z2 == 0;
return (ref $z1)->make($x1/$z2, $y1/$z2);
}
}
}
}
#
# (_power)
#
# Computes z1**z2 = exp(z2 * log z1)).
#
sub _power {
my ($z1, $z2, $inverted) = @_;
if ($inverted) {
return 1 if $z1 == 0 || $z2 == 1;
return 0 if $z2 == 0 && Re($z1) > 0;
} else {
return 1 if $z2 == 0 || $z1 == 1;
return 0 if $z1 == 0 && Re($z2) > 0;
}
my $w = $inverted ? &exp($z1 * &log($z2))
: &exp($z2 * &log($z1));
# If both arguments cartesian, return cartesian, else polar.
return $z1->{c_dirty} == 0 &&
(not ref $z2 or $z2->{c_dirty} == 0) ?
cplx(@{$w->_cartesian}) : $w;
}
#
# (_spaceship)
#
# Computes z1 <=> z2.
# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
#
sub _spaceship {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
my $sgn = $inverted ? -1 : 1;
return $sgn * ($re1 <=> $re2) if $re1 != $re2;
return $sgn * ($im1 <=> $im2);
}
#
# (_numeq)
#
# Computes z1 == z2.
#
# (Required in addition to _spaceship() because of NaNs.)
sub _numeq {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
}
#
# (_negate)
#
# Computes -z.
#
sub _negate {
my ($z) = @_;
if ($z->{c_dirty}) {
my ($r, $t) = @{$z->_polar};
$t = ($t <= 0) ? $t + pi : $t - pi;
return (ref $z)->emake($r, $t);
}
my ($re, $im) = @{$z->_cartesian};
return (ref $z)->make(-$re, -$im);
}
#
# (_conjugate)
#
# Compute complex's _conjugate.
#
sub _conjugate {
my ($z) = @_;
if ($z->{c_dirty}) {
my ($r, $t) = @{$z->_polar};
return (ref $z)->emake($r, -$t);
}
my ($re, $im) = @{$z->_cartesian};
return (ref $z)->make($re, -$im);
}
#
# (abs)
#
# Compute or set complex's norm (rho).
#
sub abs {
my ($z, $rho) = @_ ? @_ : $_;
unless (ref $z) {
if (@_ == 2) {
$_[0] = $_[1];
} else {
return CORE::abs($z);
}
}
if (defined $rho) {
$z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
$z->{p_dirty} = 0;
$z->{c_dirty} = 1;
return $rho;
} else {
return ${$z->_polar}[0];
}
}
sub _theta {
my $theta = $_[0];
if ($$theta > pi()) { $$theta -= pi2 }
elsif ($$theta <= -pi()) { $$theta += pi2 }
}
#
# arg
#
# Compute or set complex's argument (theta).
#
sub arg {
my ($z, $theta) = @_;
return $z unless ref $z;
if (defined $theta) {
_theta(\$theta);
$z->{'polar'} = [ ${$z->_polar}[0], $theta ];
$z->{p_dirty} = 0;
$z->{c_dirty} = 1;
} else {
$theta = ${$z->_polar}[1];
_theta(\$theta);
}
return $theta;
}
#
# (sqrt)
#
# Compute sqrt(z).
#
# It is quite tempting to use wantarray here so that in list context
# sqrt() would return the two solutions. This, however, would
# break things like
#
# print "sqrt(z) = ", sqrt($z), "\n";
#
# The two values would be printed side by side without no intervening
# whitespace, quite confusing.
# Therefore if you want the two solutions use the root().
#
sub sqrt {
my ($z) = @_ ? $_[0] : $_;
my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
if $im == 0;
my ($r, $t) = @{$z->_polar};
return (ref $z)->emake(CORE::sqrt($r), $t/2);
}
#
# cbrt
#
# Compute cbrt(z) (cubic root).
#
# Why are we not returning three values? The same answer as for sqrt().
#
sub cbrt {
my ($z) = @_;
return $z < 0 ?
-CORE::exp(CORE::log(-$z)/3) :
($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
unless ref $z;
my ($r, $t) = @{$z->_polar};
return 0 if $r == 0;
return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
}
#
# _rootbad
#
# Die on bad root.
#
sub _rootbad {
my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
my @up = caller(1);
$mess .= "Died at $up[1] line $up[2].\n";
die $mess;
}
#
# root
#
# Computes all nth root for z, returning an array whose size is n.
# `n' must be a positive integer.
#
# The roots are given by (for k = 0..n-1):
#
# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
#
sub root {
my ($z, $n, $k) = @_;
_rootbad($n) if ($n < 1 or int($n) != $n);
my ($r, $t) = ref $z ?
@{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
my $theta_inc = pi2 / $n;
my $rho = $r ** (1/$n);
my $cartesian = ref $z && $z->{c_dirty} == 0;
if (@_ == 2) {
my @root;
for (my $i = 0, my $theta = $t / $n;
$i < $n;
$i++, $theta += $theta_inc) {
my $w = cplxe($rho, $theta);
# Yes, $cartesian is loop invariant.
push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
}
return @root;
} elsif (@_ == 3) {
my $w = cplxe($rho, $t / $n + $k * $theta_inc);
return $cartesian ? cplx(@{$w->_cartesian}) : $w;
}
}
#
# Re
#
# Return or set Re(z).
#
sub Re {
my ($z, $Re) = @_;
return $z unless ref $z;
if (defined $Re) {
$z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
$z->{c_dirty} = 0;
$z->{p_dirty} = 1;
} else {
return ${$z->_cartesian}[0];
}
}
#
# Im
#
# Return or set Im(z).
#
sub Im {
my ($z, $Im) = @_;
return 0 unless ref $z;
if (defined $Im) {
$z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
$z->{c_dirty} = 0;
$z->{p_dirty} = 1;
} else {
return ${$z->_cartesian}[1];
}
}
#
# rho
#
# Return or set rho(w).
#
sub rho {
Math::Complex::abs(@_);
}
#
# theta
#
# Return or set theta(w).
#
sub theta {
Math::Complex::arg(@_);
}
#
# (exp)
#
# Computes exp(z).
#
sub exp {
my ($z) = @_ ? @_ : $_;
return CORE::exp($z) unless ref $z;
my ($x, $y) = @{$z->_cartesian};
return (ref $z)->emake(CORE::exp($x), $y);
}
#
# _logofzero
#
# Die on logarithm of zero.
#
sub _logofzero {
my $mess = "$_[0]: Logarithm of zero.\n";
if (defined $_[1]) {
$mess .= "(Because in the definition of $_[0], the argument ";
$mess .= "$_[1] " unless ($_[1] eq '0');
$mess .= "is 0)\n";
}
my @up = caller(1);
$mess .= "Died at $up[1] line $up[2].\n";
die $mess;
}
#
# (log)
#
# Compute log(z).
#
sub log {
my ($z) = @_ ? @_ : $_;
unless (ref $z) {
_logofzero("log") if $z == 0;
return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
}
my ($r, $t) = @{$z->_polar};
_logofzero("log") if $r == 0;
if ($t > pi()) { $t -= pi2 }
elsif ($t <= -pi()) { $t += pi2 }
return (ref $z)->make(CORE::log($r), $t);
}
#
# ln
#
# Alias for log().
#
sub ln { Math::Complex::log(@_) }
#
# log10
#
# Compute log10(z).
#
sub log10 {
return Math::Complex::log($_[0]) * _uplog10;
}
#
# logn
#
# Compute logn(z,n) = log(z) / log(n)
#
sub logn {
my ($z, $n) = @_;
$z = cplx($z, 0) unless ref $z;
my $logn = $LOGN{$n};
$logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
return &log($z) / $logn;
}
#
# (cos)
#
# Compute cos(z) = (exp(iz) + exp(-iz))/2.
#
sub cos {
my ($z) = @_ ? @_ : $_;
return CORE::cos($z) unless ref $z;
my ($x, $y) = @{$z->_cartesian};
my $ey = CORE::exp($y);
my $sx = CORE::sin($x);
my $cx = CORE::cos($x);
my $ey_1 = $ey ? 1 / $ey : Inf();
return (ref $z)->make($cx * ($ey + $ey_1)/2,
$sx * ($ey_1 - $ey)/2);
}
#
# (sin)
#
# Compute sin(z) = (exp(iz) - exp(-iz))/2.
#
sub sin {
my ($z) = @_ ? @_ : $_;
return CORE::sin($z) unless ref $z;
my ($x, $y) = @{$z->_cartesian};
my $ey = CORE::exp($y);
my $sx = CORE::sin($x);
my $cx = CORE::cos($x);
my $ey_1 = $ey ? 1 / $ey : Inf();
return (ref $z)->make($sx * ($ey + $ey_1)/2,
$cx * ($ey - $ey_1)/2);
}
#
# tan
#
# Compute tan(z) = sin(z) / cos(z).
#
sub tan {
my ($z) = @_;
my $cz = &cos($z);
_divbyzero "tan($z)", "cos($z)" if $cz == 0;
return &sin($z) / $cz;
}
#
# sec
#
# Computes the secant sec(z) = 1 / cos(z).
#
sub sec {
my ($z) = @_;
my $cz = &cos($z);
_divbyzero "sec($z)", "cos($z)" if ($cz == 0);
return 1 / $cz;
}
#
# csc
#
# Computes the cosecant csc(z) = 1 / sin(z).
#
sub csc {
my ($z) = @_;
my $sz = &sin($z);
_divbyzero "csc($z)", "sin($z)" if ($sz == 0);
return 1 / $sz;
}
#
# cosec
#
# Alias for csc().
#
sub cosec { Math::Complex::csc(@_) }
#
# cot
#
# Computes cot(z) = cos(z) / sin(z).
#
sub cot {
my ($z) = @_;
my $sz = &sin($z);
_divbyzero "cot($z)", "sin($z)" if ($sz == 0);
return &cos($z) / $sz;
}
#
# cotan
#
# Alias for cot().
#
sub cotan { Math::Complex::cot(@_) }
#
# acos
#
# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
#
sub acos {
my $z = $_[0];
return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
if (! ref $z) && CORE::abs($z) <= 1;
$z = cplx($z, 0) unless ref $z;
my ($x, $y) = @{$z->_cartesian};
return 0 if $x == 1 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $alpha = ($t1 + $t2)/2;
my $beta = ($t1 - $t2)/2;
$alpha = 1 if $alpha < 1;
if ($beta > 1) { $beta = 1 }
elsif ($beta < -1) { $beta = -1 }
my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
$v = -$v if $y > 0 || ($y == 0 && $x < -1);
return (ref $z)->make($u, $v);
}
#
# asin
#
# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
#
sub asin {
my $z = $_[0];
return CORE::atan2($z, CORE::sqrt(1-$z*$z))
if (! ref $z) && CORE::abs($z) <= 1;
$z = cplx($z, 0) unless ref $z;
my ($x, $y) = @{$z->_cartesian};
return 0 if $x == 0 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $alpha = ($t1 + $t2)/2;
my $beta = ($t1 - $t2)/2;
$alpha = 1 if $alpha < 1;
if ($beta > 1) { $beta = 1 }
elsif ($beta < -1) { $beta = -1 }
my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
$v = -$v if $y > 0 || ($y == 0 && $x < -1);
return (ref $z)->make($u, $v);
}
#
# atan
#
# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
#
sub atan {
my ($z) = @_;
return CORE::atan2($z, 1) unless ref $z;
my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
return 0 if $x == 0 && $y == 0;
_divbyzero "atan(i)" if ( $z == i);
_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
my $log = &log((i + $z) / (i - $z));
return _ip2 * $log;
}
#
# asec
#
# Computes the arc secant asec(z) = acos(1 / z).
#
sub asec {
my ($z) = @_;
_divbyzero "asec($z)", $z if ($z == 0);
return acos(1 / $z);
}
#
# acsc
#
# Computes the arc cosecant acsc(z) = asin(1 / z).
#
sub acsc {
my ($z) = @_;
_divbyzero "acsc($z)", $z if ($z == 0);
return asin(1 / $z);
}
#
# acosec
#
# Alias for acsc().
#
sub acosec { Math::Complex::acsc(@_) }
#
# acot
#
# Computes the arc cotangent acot(z) = atan(1 / z)
#
sub acot {
my ($z) = @_;
_divbyzero "acot(0)" if $z == 0;
return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
unless ref $z;
_divbyzero "acot(i)" if ($z - i == 0);
_logofzero "acot(-i)" if ($z + i == 0);
return atan(1 / $z);
}
#
# acotan
#
# Alias for acot().
#
sub acotan { Math::Complex::acot(@_) }
#
# cosh
#
# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
#
sub cosh {
my ($z) = @_;
my $ex;
unless (ref $z) {
$ex = CORE::exp($z);
return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
}
my ($x, $y) = @{$z->_cartesian};
$ex = CORE::exp($x);
my $ex_1 = $ex ? 1 / $ex : Inf();
return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
CORE::sin($y) * ($ex - $ex_1)/2);
}
#
# sinh
#
# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
#
sub sinh {
my ($z) = @_;
my $ex;
unless (ref $z) {
return 0 if $z == 0;
$ex = CORE::exp($z);
return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
}
my ($x, $y) = @{$z->_cartesian};
my $cy = CORE::cos($y);
my $sy = CORE::sin($y);
$ex = CORE::exp($x);
my $ex_1 = $ex ? 1 / $ex : Inf();
return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
CORE::sin($y) * ($ex + $ex_1)/2);
}
#
# tanh
#
# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
#
sub tanh {
my ($z) = @_;
my $cz = cosh($z);
_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
my $sz = sinh($z);
return 1 if $cz == $sz;
return -1 if $cz == -$sz;
return $sz / $cz;
}
#
# sech
#
# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
#
sub sech {
my ($z) = @_;
my $cz = cosh($z);
_divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
return 1 / $cz;
}
#
# csch
#
# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
#
sub csch {
my ($z) = @_;
my $sz = sinh($z);
_divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
return 1 / $sz;
}
#
# cosech
#
# Alias for csch().
#
sub cosech { Math::Complex::csch(@_) }
#
# coth
#
# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
#
sub coth {
my ($z) = @_;
my $sz = sinh($z);
_divbyzero "coth($z)", "sinh($z)" if $sz == 0;
my $cz = cosh($z);
return 1 if $cz == $sz;
return -1 if $cz == -$sz;
return $cz / $sz;
}
#
# cotanh
#
# Alias for coth().
#
sub cotanh { Math::Complex::coth(@_) }
#
# acosh
#
# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
#
sub acosh {
my ($z) = @_;
unless (ref $z) {
$z = cplx($z, 0);
}
my ($re, $im) = @{$z->_cartesian};
if ($im == 0) {
return CORE::log($re + CORE::sqrt($re*$re - 1))
if $re >= 1;
return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
if CORE::abs($re) < 1;
}
my $t = &sqrt($z * $z - 1) + $z;
# Try Taylor if looking bad (this usually means that
# $z was large negative, therefore the sqrt is really
# close to abs(z), summing that with z...)
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
if $t == 0;
my $u = &log($t);
$u->Im(-$u->Im) if $re < 0 && $im == 0;
return $re < 0 ? -$u : $u;
}
#
# asinh
#
# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
#
sub asinh {
my ($z) = @_;
unless (ref $z) {
my $t = $z + CORE::sqrt($z*$z + 1);
return CORE::log($t) if $t;
}
my $t = &sqrt($z * $z + 1) + $z;
# Try Taylor if looking bad (this usually means that
# $z was large negative, therefore the sqrt is really
# close to abs(z), summing that with z...)
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
if $t == 0;
return &log($t);
}
#
# atanh
#
# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
#
sub atanh {
my ($z) = @_;
unless (ref $z) {
return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
$z = cplx($z, 0);
}
_divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
_logofzero 'atanh(-1)' if (1 + $z == 0);
return 0.5 * &log((1 + $z) / (1 - $z));
}
#
# asech
#
# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
#
sub asech {
my ($z) = @_;
_divbyzero 'asech(0)', "$z" if ($z == 0);
return acosh(1 / $z);
}
#
# acsch
#
# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
#
sub acsch {
my ($z) = @_;
_divbyzero 'acsch(0)', $z if ($z == 0);
return asinh(1 / $z);
}
#
# acosech
#
# Alias for acosh().
#
sub acosech { Math::Complex::acsch(@_) }
#
# acoth
#
# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
#
sub acoth {
my ($z) = @_;
_divbyzero 'acoth(0)' if ($z == 0);
unless (ref $z) {
return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
$z = cplx($z, 0);
}
_divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
return &log((1 + $z) / ($z - 1)) / 2;
}
#
# acotanh
#
# Alias for acot().
#
sub acotanh { Math::Complex::acoth(@_) }
#
# (atan2)
#
# Compute atan(z1/z2), minding the right quadrant.
#
sub atan2 {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1, $re2, $im2);
if ($inverted) {
($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
} else {
($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
}
if ($im1 || $im2) {
# In MATLAB the imaginary parts are ignored.
# warn "atan2: Imaginary parts ignored";
# http://documents.wolfram.com/mathematica/functions/ArcTan
# NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
my $s = $z1 * $z1 + $z2 * $z2;
_divbyzero("atan2") if $s == 0;
my $i = &i;
my $r = $z2 + $z1 * $i;
return -$i * &log($r / &sqrt( $s ));
}
return CORE::atan2($re1, $re2);
}
#
# display_format
# ->display_format
#
# Set (get if no argument) the display format for all complex numbers that
# don't happen to have overridden it via ->display_format
#
# When called as an object method, this actually sets the display format for
# the current object.
#
# Valid object formats are 'c' and 'p' for cartesian and polar. The first
# letter is used actually, so the type can be fully spelled out for clarity.
#
sub display_format {
my $self = shift;
my %display_format = %DISPLAY_FORMAT;
if (ref $self) { # Called as an object method
if (exists $self->{display_format}) {
my %obj = %{$self->{display_format}};
@display_format{keys %obj} = values %obj;
}
}
if (@_ == 1) {
$display_format{style} = shift;
} else {
my %new = @_;
@display_format{keys %new} = values %new;
}
if (ref $self) { # Called as an object method
$self->{display_format} = { %display_format };
return
wantarray ?
%{$self->{display_format}} :
$self->{display_format}->{style};
}
# Called as a class method
%DISPLAY_FORMAT = %display_format;
return
wantarray ?
%DISPLAY_FORMAT :
$DISPLAY_FORMAT{style};
}
#
# (_stringify)
#
# Show nicely formatted complex number under its cartesian or polar form,
# depending on the current display format:
#
# . If a specific display format has been recorded for this object, use it.
# . Otherwise, use the generic current default for all complex numbers,
# which is a package global variable.
#
sub _stringify {
my ($z) = shift;
my $style = $z->display_format;
$style = $DISPLAY_FORMAT{style} unless defined $style;
return $z->_stringify_polar if $style =~ /^p/i;
return $z->_stringify_cartesian;
}
#
# ->_stringify_cartesian
#
# Stringify as a cartesian representation 'a+bi'.
#
sub _stringify_cartesian {
my $z = shift;
my ($x, $y) = @{$z->_cartesian};
my ($re, $im);
my %format = $z->display_format;
my $format = $format{format};
if ($x) {
if ($x =~ /^NaN[QS]?$/i) {
$re = $x;
} else {
if ($x =~ /^-?\Q$Inf\E$/oi) {
$re = $x;
} else {
$re = defined $format ? sprintf($format, $x) : $x;
}
}
} else {
undef $re;
}
if ($y) {
if ($y =~ /^(NaN[QS]?)$/i) {
$im = $y;
} else {
if ($y =~ /^-?\Q$Inf\E$/oi) {
$im = $y;
} else {
$im =
defined $format ?
sprintf($format, $y) :
($y == 1 ? "" : ($y == -1 ? "-" : $y));
}
}
$im .= "i";
} else {
undef $im;
}
my $str = $re;
if (defined $im) {
if ($y < 0) {
$str .= $im;
} elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
$str .= "+" if defined $re;
$str .= $im;
}
} elsif (!defined $re) {
$str = "0";
}
return $str;
}
#
# ->_stringify_polar
#
# Stringify as a polar representation '[r,t]'.
#
sub _stringify_polar {
my $z = shift;
my ($r, $t) = @{$z->_polar};
my $theta;
my %format = $z->display_format;
my $format = $format{format};
if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
$theta = $t;
} elsif ($t == pi) {
$theta = "pi";
} elsif ($r == 0 || $t == 0) {
$theta = defined $format ? sprintf($format, $t) : $t;
}
return "[$r,$theta]" if defined $theta;
#
# Try to identify pi/n and friends.
#
$t -= int(CORE::abs($t) / pi2) * pi2;
if ($format{polar_pretty_print} && $t) {
my ($a, $b);
for $a (2..9) {
$b = $t * $a / pi;
if ($b =~ /^-?\d+$/) {
$b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
$theta = "${b}pi/$a";
last;
}
}
}
if (defined $format) {
$r = sprintf($format, $r);
$theta = sprintf($format, $t) unless defined $theta;
} else {
$theta = $t unless defined $theta;
}
return "[$r,$theta]";
}
sub Inf {
return $Inf;
}
1;
__END__
=pod
=head1 NAME
Math::Complex - complex numbers and associated mathematical functions
=head1 SYNOPSIS
use Math::Complex;
$z = Math::Complex->make(5, 6);
$t = 4 - 3*i + $z;
$j = cplxe(1, 2*pi/3);
=head1 DESCRIPTION
This package lets you create and manipulate complex numbers. By default,
I<Perl> limits itself to real numbers, but an extra C<use> statement brings
full complex support, along with a full set of mathematical functions
typically associated with and/or extended to complex numbers.
If you wonder what complex numbers are, they were invented to be able to solve
the following equation:
x*x = -1
and by definition, the solution is noted I<i> (engineers use I<j> instead since
I<i> usually denotes an intensity, but the name does not matter). The number
I<i> is a pure I<imaginary> number.
The arithmetics with pure imaginary numbers works just like you would expect
it with real numbers... you just have to remember that
i*i = -1
so you have:
5i + 7i = i * (5 + 7) = 12i
4i - 3i = i * (4 - 3) = i
4i * 2i = -8
6i / 2i = 3
1 / i = -i
Complex numbers are numbers that have both a real part and an imaginary
part, and are usually noted:
a + bi
where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
arithmetic with complex numbers is straightforward. You have to
keep track of the real and the imaginary parts, but otherwise the
rules used for real numbers just apply:
(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
A graphical representation of complex numbers is possible in a plane
(also called the I<complex plane>, but it's really a 2D plane).
The number
z = a + bi
is the point whose coordinates are (a, b). Actually, it would
be the vector originating from (0, 0) to (a, b). It follows that the addition
of two complex numbers is a vectorial addition.
Since there is a bijection between a point in the 2D plane and a complex
number (i.e. the mapping is unique and reciprocal), a complex number
can also be uniquely identified with polar coordinates:
[rho, theta]
where C<rho> is the distance to the origin, and C<theta> the angle between
the vector and the I<x> axis. There is a notation for this using the
exponential form, which is:
rho * exp(i * theta)
where I<i> is the famous imaginary number introduced above. Conversion
between this form and the cartesian form C<a + bi> is immediate:
a = rho * cos(theta)
b = rho * sin(theta)
which is also expressed by this formula:
z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
In other words, it's the projection of the vector onto the I<x> and I<y>
axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
the I<argument> of the complex number. The I<norm> of C<z> is
marked here as C<abs(z)>.
The polar notation (also known as the trigonometric representation) is
much more handy for performing multiplications and divisions of
complex numbers, whilst the cartesian notation is better suited for
additions and subtractions. Real numbers are on the I<x> axis, and
therefore I<y> or I<theta> is zero or I<pi>.
All the common operations that can be performed on a real number have
been defined to work on complex numbers as well, and are merely
I<extensions> of the operations defined on real numbers. This means
they keep their natural meaning when there is no imaginary part, provided
the number is within their definition set.
For instance, the C<sqrt> routine which computes the square root of
its argument is only defined for non-negative real numbers and yields a
non-negative real number (it is an application from B<R+> to B<R+>).
If we allow it to return a complex number, then it can be extended to
negative real numbers to become an application from B<R> to B<C> (the
set of complex numbers):
sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
It can also be extended to be an application from B<C> to B<C>,
whilst its restriction to B<R> behaves as defined above by using
the following definition:
sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
Indeed, a negative real number can be noted C<[x,pi]> (the modulus
I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
number) and the above definition states that
sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
which is exactly what we had defined for negative real numbers above.
The C<sqrt> returns only one of the solutions: if you want the both,
use the C<root> function.
All the common mathematical functions defined on real numbers that
are extended to complex numbers share that same property of working
I<as usual> when the imaginary part is zero (otherwise, it would not
be called an extension, would it?).
A I<new> operation possible on a complex number that is
the identity for real numbers is called the I<conjugate>, and is noted
with a horizontal bar above the number, or C<~z> here.
z = a + bi
~z = a - bi
Simple... Now look:
z * ~z = (a + bi) * (a - bi) = a*a + b*b
We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
distance to the origin, also known as:
rho = abs(z) = sqrt(a*a + b*b)
so
z * ~z = abs(z) ** 2
If z is a pure real number (i.e. C<b == 0>), then the above yields:
a * a = abs(a) ** 2
which is true (C<abs> has the regular meaning for real number, i.e. stands
for the absolute value). This example explains why the norm of C<z> is
noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
is the regular C<abs> we know when the complex number actually has no
imaginary part... This justifies I<a posteriori> our use of the C<abs>
notation for the norm.
=head1 OPERATIONS
Given the following notations:
z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>
the following (overloaded) operations are supported on complex numbers:
z1 + z2 = (a + c) + i(b + d)
z1 - z2 = (a - c) + i(b - d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
z1 ** z2 = exp(z2 * log z1)
~z = a - bi
abs(z) = r1 = sqrt(a*a + b*b)
sqrt(z) = sqrt(r1) * exp(i * t/2)
exp(z) = exp(a) * exp(i * b)
log(z) = log(r1) + i*t
sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
The definition used for complex arguments of atan2() is
-i log((x + iy)/sqrt(x*x+y*y))
Note that atan2(0, 0) is not well-defined.
The following extra operations are supported on both real and complex
numbers:
Re(z) = a
Im(z) = b
arg(z) = t
abs(z) = r
cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)
tan(z) = sin(z) / cos(z)
csc(z) = 1 / sin(z)
sec(z) = 1 / cos(z)
cot(z) = 1 / tan(z)
asin(z) = -i * log(i*z + sqrt(1-z*z))
acos(z) = -i * log(z + i*sqrt(1-z*z))
atan(z) = i/2 * log((i+z) / (i-z))
acsc(z) = asin(1 / z)
asec(z) = acos(1 / z)
acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
sinh(z) = 1/2 (exp(z) - exp(-z))
cosh(z) = 1/2 (exp(z) + exp(-z))
tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
csch(z) = 1 / sinh(z)
sech(z) = 1 / cosh(z)
coth(z) = 1 / tanh(z)
asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z-1))
atanh(z) = 1/2 * log((1+z) / (1-z))
acsch(z) = asinh(1 / z)
asech(z) = acosh(1 / z)
acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
returns only one of the solutions: if you want all three, use the
C<root> function.
The I<root> function is available to compute all the I<n>
roots of some complex, where I<n> is a strictly positive integer.
There are exactly I<n> such roots, returned as a list. Getting the
number mathematicians call C<j> such that:
1 + j + j*j = 0;
is a simple matter of writing:
$j = ((root(1, 3))[1];
The I<k>th root for C<z = [r,t]> is given by:
(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
You can return the I<k>th root directly by C<root(z, n, k)>,
indexing starting from I<zero> and ending at I<n - 1>.
The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
defined. In order to ensure its restriction to real numbers is conform
to what you would expect, the comparison is run on the real part of
the complex number first, and imaginary parts are compared only when
the real parts match.
=head1 CREATION
To create a complex number, use either:
$z = Math::Complex->make(3, 4);
$z = cplx(3, 4);
if you know the cartesian form of the number, or
$z = 3 + 4*i;
if you like. To create a number using the polar form, use either:
$z = Math::Complex->emake(5, pi/3);
$x = cplxe(5, pi/3);
instead. The first argument is the modulus, the second is the angle
(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
notation for complex numbers in the polar form).
It is possible to write:
$x = cplxe(-3, pi/4);
but that will be silently converted into C<[3,-3pi/4]>, since the
modulus must be non-negative (it represents the distance to the origin
in the complex plane).
It is also possible to have a complex number as either argument of the
C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
the argument will be used.
$z1 = cplx(-2, 1);
$z2 = cplx($z1, 4);
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
understand a single (string) argument of the forms
2-3i
-3i
[2,3]
[2,-3pi/4]
[2]
in which case the appropriate cartesian and exponential components
will be parsed from the string and used to create new complex numbers.
The imaginary component and the theta, respectively, will default to zero.
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
understand the case of no arguments: this means plain zero or (0, 0).
=head1 DISPLAYING
When printed, a complex number is usually shown under its cartesian
style I<a+bi>, but there are legitimate cases where the polar style
I<[r,t]> is more appropriate. The process of converting the complex
number into a string that can be displayed is known as I<stringification>.
By calling the class method C<Math::Complex::display_format> and
supplying either C<"polar"> or C<"cartesian"> as an argument, you
override the default display style, which is C<"cartesian">. Not
supplying any argument returns the current settings.
This default can be overridden on a per-number basis by calling the
C<display_format> method instead. As before, not supplying any argument
returns the current display style for this number. Otherwise whatever you
specify will be the new display style for I<this> particular number.
For instance:
use Math::Complex;
Math::Complex::display_format('polar');
$j = (root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]"
$j->display_format('cartesian');
print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
The polar style attempts to emphasize arguments like I<k*pi/n>
(where I<n> is a positive integer and I<k> an integer within [-9, +9]),
this is called I<polar pretty-printing>.
For the reverse of stringifying, see the C<make> and C<emake>.
=head2 CHANGED IN PERL 5.6
The C<display_format> class method and the corresponding
C<display_format> object method can now be called using
a parameter hash instead of just a one parameter.
The old display format style, which can have values C<"cartesian"> or
C<"polar">, can be changed using the C<"style"> parameter.
$j->display_format(style => "polar");
The one parameter calling convention also still works.
$j->display_format("polar");
There are two new display parameters.
The first one is C<"format">, which is a sprintf()-style format string
to be used for both numeric parts of the complex number(s). The is
somewhat system-dependent but most often it corresponds to C<"%.15g">.
You can revert to the default by setting the C<format> to C<undef>.
# the $j from the above example
$j->display_format('format' => '%.5f');
print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
$j->display_format('format' => undef);
print "j = $j\n"; # Prints "j = -0.5+0.86603i"
Notice that this affects also the return values of the
C<display_format> methods: in list context the whole parameter hash
will be returned, as opposed to only the style parameter value.
This is a potential incompatibility with earlier versions if you
have been calling the C<display_format> method in list context.
The second new display parameter is C<"polar_pretty_print">, which can
be set to true or false, the default being true. See the previous
section for what this means.
=head1 USAGE
Thanks to overloading, the handling of arithmetics with complex numbers
is simple and almost transparent.
Here are some examples:
use Math::Complex;
$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
$z = -16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";
$k = exp(i * 2*pi/3);
print "$j - $k = ", $j - $k, "\n";
$z->Re(3); # Re, Im, arg, abs,
$j->arg(2); # (the last two aka rho, theta)
# can be used also as mutators.
=head1 CONSTANTS
=head2 PI
The constant C<pi> and some handy multiples of it (pi2, pi4,
and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
exported:
use Math::Complex ':pi';
$third_of_circle = pi2 / 3;
=head2 Inf
The floating point infinity can be exported as a subroutine Inf():
use Math::Complex qw(Inf sinh);
my $AlsoInf = Inf() + 42;
my $AnotherInf = sinh(1e42);
print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
Note that the stringified form of infinity varies between platforms:
it can be for example any of
inf
infinity
INF
1.#INF
or it can be something else.
Also note that in some platforms trying to use the infinity in
arithmetic operations may result in Perl crashing because using
an infinity causes SIGFPE or its moral equivalent to be sent.
The way to ignore this is
local $SIG{FPE} = sub { };
=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
The division (/) and the following functions
log ln log10 logn
tan sec csc cot
atan asec acsc acot
tanh sech csch coth
atanh asech acsch acoth
cannot be computed for all arguments because that would mean dividing
by zero or taking logarithm of zero. These situations cause fatal
runtime errors looking like this
cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...
or
atanh(-1): Logarithm of zero.
Died at...
For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
cannot be C<-i> (the negative imaginary unit). For the C<tan>,
C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
is any integer. atan2(0, 0) is undefined, and if the complex arguments
are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
Note that because we are operating on approximations of real numbers,
these errors can happen when merely `too close' to the singularities
listed above.
=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
The C<make> and C<emake> accept both real and complex arguments.
When they cannot recognize the arguments they will die with error
messages like the following
Math::Complex::make: Cannot take real part of ...
Math::Complex::make: Cannot take real part of ...
Math::Complex::emake: Cannot take rho of ...
Math::Complex::emake: Cannot take theta of ...
=head1 BUGS
Saying C<use Math::Complex;> exports many mathematical routines in the
caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
This is construed as a feature by the Authors, actually... ;-)
All routines expect to be given real or complex numbers. Don't attempt to
use BigFloat, since Perl has currently no rule to disambiguate a '+'
operation (for instance) between two overloaded entities.
In Cray UNICOS there is some strange numerical instability that results
in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
Whatever it is, it does not manifest itself anywhere else where Perl runs.
=head1 SEE ALSO
L<Math::Trig>
=head1 AUTHORS
Daniel S. Lewart <F<lewart!at!uiuc.edu>>,
Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
Zefram <zefram@fysh.org>
=head1 LICENSE
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
1;
# eof
|