/usr/share/lifelines/cons.ll is in lifelines-reports 3.0.61-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | /*
* @progname cons.ll
* @version 1.0
* @author Teschler
* @category
* @output Text
* @description
Calculates coefficient of inbreeding F(A,B) for the offspring
of two individuals A and B.
The consanguity (blood in common) C(A,B) is 2*F(A,B)
F(A,B) = sum(0.5^(n(i)+p(i)) * (1+F(J(i))/2)
The sum extends over the number of distinct chains of relationship
connecting A and B. The ith chain has n(i)+p(i) links ascending
from A and B to the common ancestor J(i), whose coefficient of
inbreeding is f(J(i)).
A chain of relationship consists of all links leading from A and
B to a common ancestor J, and has no other point in common except
J. Two chains are considered distinct if they differ in at least
one link.
Result goes to file /tmp/t1
This is one of my first LL programs so please do not look
for elegance ;-)
Arthur.Teschler@uni-giessen.de
*/
global(anc_line) /* holds the current way from A towards B */
global(to_anc) /* B's ancestors */
global(from_anc) /* A's ancestors */
global(common_anc) /* A's and B's common ancestors */
global(common_stack) /* holds J(i) for later inbreed check */
global(anc_line_stack) /* holds lines for later output */
global(coefftab) /* holds inbreed coefficients for J(i) */
func coanc(A,B)
{
indiset(from_anc)
addtoset(from_anc,A,0)
set(from_anc,ancestorset(from_anc))
addtoset(from_anc,A,0)
indiset(to_anc)
addtoset(to_anc,B,0)
set(to_anc,ancestorset(to_anc))
addtoset(to_anc,B,0)
indiset(common_anc)
set(common_anc,intersect(from_anc,to_anc))
list(anc_line)
if (lengthset(common_anc))
{
push(anc_line_stack,"--") /*Marker*/
if (gt(lengthset(from_anc),lengthset(to_anc)))
{
call swap(from_anc,to_anc)
call swap(A,B)
}
call iter(A,0,B)
/*
At this point we have collected all paths
leading from A to B on anc_line_stack
Now we have to calculate f(J(i)) for all
common ancestors that are in our list of
paths (saved on common_stack), then we
can sum up things.
*/
while(pers,dequeue(common_stack)) {
if (not(lookup(coefftab,key(pers,0)))) {
set(pc,coanc(father(pers),mother(pers)))
insert(coefftab,key(pers),pc)
}
}
print "Results for :"
print fullname(A,0,0,50) sp()
print fullname(B,0,0,50) nl()
set(result,sum_up())
}
else
{
set(result,"0 1")
}
return(result)
}
proc iter(current,common,target)
/* Recursively traverses the tree (better hedge)
to find all paths leading from current to
target. Makes use of precalculated sets
common_anc and to_anc.
Fills up a list of paths
*/
{
print (".")
push(anc_line,current)
if (eq(current,target)) {
call found(common)
pop(anc_line)
return()
}
if (not(common)) {
/* We are ascending */
if (father(current)) {
call iter(father(current),0,target)
}
if (mother(current)) {
call iter(mother(current),0,target)
}
if (iselement(current,common_anc)) {
set(common,current)
}
}
if (common) {
/* We have found a common ancestor
now we check for descendants */
families(current,curfam,spouse,cnt) {
children(curfam,curchild,cnt) {
if (notchecked(curchild)) {
if(iselement(curchild,to_anc)) { /* <- speeds up! */
call iter(curchild,common,target)
} /* iselement */
} /* notchecked */
} /* children */
} /* families */
} /* common */
pop(anc_line)
}
proc found(common) {
/* Unfortunately LL pushes references.
I had liked to push values.
Now I have to do my own special stack handling.
Not very elegant, though :(
*/
print("!")
push(anc_line_stack,"-") /*Marker*/
forlist(anc_line,pers,cnt) {
push(anc_line_stack,key(pers))
}
push(anc_line_stack,key(common))
push(common_stack,common)
}
func sum_up()
{
/*
pops anc_lines from anc_line_stack and sums
up their values.
prints them as a side effect, otherwise there would
be no need to save all those steps, the length would
have been enough
*/
set(sum,"0 1")
set(lcnt,0)
set(element,pop(anc_line_stack))
while(strcmp(element,"--")) {
incr(lcnt)
set(common,element)
print "Common ancestor: " fullname(indi(common),0,0,50) nl()
set(factor,lookup(coefftab,common))
if (strcmp(factor,"0 1")) {
print "(Inbreeding coefficient: " showfrac(factor) ")" nl()
}
set(length,0)
set(pers,pop(anc_line_stack))
while(strcmp(pers,"-")) {
incr(length)
print " " d(length) " " fullname(indi(pers),0,0,50) nl()
set(pers,pop(anc_line_stack))
}
set(element,pop(anc_line_stack))
set(factor,addfrac("1 0",factor))
set(factor, mulfrac( factor,concat("1 ",d(length))))
print "------------" nl()
print showfrac(factor) nl() nl()
set(sum,addfrac(sum,factor))
}
print "============" nl()
print "Sum: " showfrac(sum) " (" d(lcnt) " different lines)" nl()
print nl()
return(sum)
}
/*
Some functions to handle fractions follow here.
Lifelines has no type fraction let's put nominator denominator
as space separated strings. As the denominator is always 2^x,
we put just x
*/
func addfrac(A,B)
{
set(nomA,atoi(A))
set(denA,atoi(substring(A,index(A," ",1),strlen(A))))
set(nomB,atoi(B))
set(denB,atoi(substring(B,index(B," ",1),strlen(B))))
while (lt(denA,denB)) {
incr(denA)
set(nomA,mul(nomA,2))
}
while (lt(denB,denA)) {
incr(denB)
set(nomB,mul(nomB,2))
}
set(nomA,add(nomA,nomB))
while (eq(0,mod(nomA,2))) {
decr(denA)
set(nomA,div(nomA,2))
}
set(result,concat(d(nomA)," "))
return(concat(result,d(denA)))
}
func mulfrac(A,B)
{
/* Multiply my funny fractions */
set(nomA,atoi(A))
set(denA,atoi(substring(A,index(A," ",1),strlen(A))))
set(nomB,atoi(B))
set(denB,atoi(substring(B,index(B," ",1),strlen(B))))
set(nomA,mul(nomA,nomB))
set(denA,add(denA,denB))
while (eq(0,mod(nomA,2))) {
decr(denA)
set(nomA,div(nomA,2))
}
set(result,concat(d(nomA)," "))
return(concat(result,d(denA)))
}
func showfrac(A)
{
/* show my funny fractions */
set(nomA,atoi(A))
set(denA,atoi(substring(A,index(A," ",1),strlen(A))))
return(concat(d(nomA),concat("/",d(exp(2,denA)))))
}
proc swap(V1,V2)
{
set(help,V1)
set(V1,V2)
set(V2,help)
}
/* I'm sure there are better ways to handle the following two ... */
func iselement(E,S)
{
indiset(test)
addtoset(test,E,0)
return (lengthset(intersect(test,S)))
}
func notchecked(i)
{
forlist(anc_line,pers,cnt) {
if (eq(key(pers,0),key(i,0))) { return (0) }
}
return (1)
}
proc show_stack()
{
/* for debugging purposes */
print "Current:" nl()
forlist(anc_line,pers,cnt) {
print " " d(cnt) fullname(pers,0,0,50) nl()
}
}
proc main() {
getindimsg(from,"1st :")
getindimsg(to,"2nd :")
list(common_stack)
list(anc_line_stack)
table(coefftab)
newfile("/tmp/t1",0)
set(cf,mulfrac("2 0",coanc(from,to)))
print "Consanguity factor: " showfrac(cf) nl()
}
|