This file is indexed.

/usr/share/doc/llvm-3.1-doc/html/Passes.html is in llvm-3.1-doc 3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <title>LLVM's Analysis and Transform Passes</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">
  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>

<!--

If Passes.html is up to date, the following "one-liner" should print
an empty diff.

egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
      -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
perl >help <<'EOT' && diff -u help html; rm -f help html
open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
while (<HTML>) {
  m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
  $order{$1} = sprintf("%03d", 1 + int %order);
}
open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
while (<HELP>) {
  m:^    -([^ ]+) +- (.*)$: or next;
  my $o = $order{$1};
  $o = "000" unless defined $o;
  push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
  push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
}
@x = map { s/^\d\d\d//; $_ } sort @x;
@y = map { s/^\d\d\d//; $_ } sort @y;
print @x, @y;
EOT

This (real) one-liner can also be helpful when converting comments to HTML:

perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'

  -->

<h1>LLVM's Analysis and Transform Passes</h1>

<ol>
  <li><a href="#intro">Introduction</a></li>
  <li><a href="#analyses">Analysis Passes</a>
  <li><a href="#transforms">Transform Passes</a></li>
  <li><a href="#utilities">Utility Passes</a></li>
</ol>

<div class="doc_author">
  <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
            and Gordon Henriksen</p>
</div>

<!-- ======================================================================= -->
<h2><a name="intro">Introduction</a></h2>
<div>
  <p>This document serves as a high level summary of the optimization features 
  that LLVM provides. Optimizations are implemented as Passes that traverse some
  portion of a program to either collect information or transform the program.
  The table below divides the passes that LLVM provides into three categories.
  Analysis passes compute information that other passes can use or for debugging
  or program visualization purposes. Transform passes can use (or invalidate)
  the analysis passes. Transform passes all mutate the program in some way. 
  Utility passes provides some utility but don't otherwise fit categorization.
  For example passes to extract functions to bitcode or write a module to
  bitcode are neither analysis nor transform passes.
  <p>The table below provides a quick summary of each pass and links to the more
  complete pass description later in the document.</p>

<table>
<tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
<tr><th>Option</th><th>Name</th></tr>
<tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
<tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
<tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
<tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
<tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
<tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
<tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
<tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
<tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
<tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
<tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
<tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
<tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
<tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
<tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
<tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
<tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
<tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
<tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
<tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
<tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
<tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
<tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
<tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
<tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
<tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
<tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
<tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
<tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
<tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
<tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
<tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
<tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
<tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
<tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
<tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
<tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
<tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
<tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>


<tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
<tr><th>Option</th><th>Name</th></tr>
<tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
<tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
<tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
<tr><td><a href="#bb-vectorize">-bb-vectorize</a></td><td>Combine instructions to form vector instructions within basic blocks</td></tr>
<tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
<tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
<tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
<tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
<tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
<tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
<tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
<tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
<tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
<tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
<tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
<tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
<tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
<tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
<tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
<tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
<tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
<tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
<tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
<tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
<tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
<tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
<tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
<tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
<tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
<tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
<tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
<tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
<tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
<tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
<tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
<tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
<tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
<tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
<tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
<tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
<tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
<tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
<tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
<tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
<tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
<tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
<tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
<tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
<tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
<tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
<tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
<tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
<tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
<tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
<tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
<tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
<tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
<tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
<tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
<tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
<tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>


<tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
<tr><th>Option</th><th>Name</th></tr>
<tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
<tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
<tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
<tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
<tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
<tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
<tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
<tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
<tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
<tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
<tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
</table>

</div>

<!-- ======================================================================= -->
<h2><a name="analyses">Analysis Passes</a></h2>
<div>
  <p>This section describes the LLVM Analysis Passes.</p>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
</h3>
<div>
  <p>This is a simple N^2 alias analysis accuracy evaluator.
  Basically, for each function in the program, it simply queries to see how the
  alias analysis implementation answers alias queries between each pair of
  pointers in the function.</p>

  <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
  Spadini, and Wojciech Stryjewski.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
</h3>
<div>
  <p>A basic alias analysis pass that implements identities (two different
  globals cannot alias, etc), but does no stateful analysis.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
</h3>
<div>
  <p>Yet to be written.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
</h3>
<div>
  <p>
  A pass which can be used to count how many alias queries
  are being made and how the alias analysis implementation being used responds.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="debug-aa">-debug-aa: AA use debugger</a>
</h3>
<div>
  <p>
  This simple pass checks alias analysis users to ensure that if they
  create a new value, they do not query AA without informing it of the value.
  It acts as a shim over any other AA pass you want.
  </p>
  
  <p>
  Yes keeping track of every value in the program is expensive, but this is 
  a debugging pass.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
</h3>
<div>
  <p>
  This pass is a simple dominator construction algorithm for finding forward
  dominator frontiers.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="domtree">-domtree: Dominator Tree Construction</a>
</h3>
<div>
  <p>
  This pass is a simple dominator construction algorithm for finding forward
  dominators.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the call graph into a
  <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
  to convert it to postscript or some other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the control flow graph
  into a <code>.dot</code> graph.  This graph can then be processed with the
  "dot" tool to convert it to postscript or some other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the control flow graph
  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
  then be processed with the "dot" tool to convert it to postscript or some
  other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the dominator tree
  into a <code>.dot</code> graph.  This graph can then be processed with the
  "dot" tool to convert it to postscript or some other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the dominator tree
  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
  then be processed with the "dot" tool to convert it to postscript or some
  other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the post dominator tree
  into a <code>.dot</code> graph.  This graph can then be processed with the
  "dot" tool to convert it to postscript or some other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the post dominator tree
  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
  then be processed with the "dot" tool to convert it to postscript or some
  other suitable format.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
</h3>
<div>
  <p>
  This simple pass provides alias and mod/ref information for global values
  that do not have their address taken, and keeps track of whether functions
  read or write memory (are "pure").  For this simple (but very common) case,
  we can provide pretty accurate and useful information.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="instcount">-instcount: Counts the various types of Instructions</a>
</h3>
<div>
  <p>
  This pass collects the count of all instructions and reports them
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="intervals">-intervals: Interval Partition Construction</a>
</h3>
<div>
  <p>
  This analysis calculates and represents the interval partition of a function,
  or a preexisting interval partition.
  </p>
  
  <p>
  In this way, the interval partition may be used to reduce a flow graph down
  to its degenerate single node interval partition (unless it is irreducible).
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="iv-users">-iv-users: Induction Variable Users</a>
</h3>
<div>
  <p>Bookkeeping for "interesting" users of expressions computed from 
  induction variables.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
</h3>
<div>
  <p>Interface for lazy computation of value constraint information.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lda">-lda: Loop Dependence Analysis</a>
</h3>
<div>
  <p>Loop dependence analysis framework, which is used to detect dependences in
  memory accesses in loops.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
</h3>
<div>
  <p>LibCall Alias Analysis.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lint">-lint: Statically lint-checks LLVM IR</a>
</h3>
<div>
  <p>This pass statically checks for common and easily-identified constructs
  which produce undefined or likely unintended behavior in LLVM IR.</p>
 
  <p>It is not a guarantee of correctness, in two ways. First, it isn't
  comprehensive. There are checks which could be done statically which are
  not yet implemented. Some of these are indicated by TODO comments, but
  those aren't comprehensive either. Second, many conditions cannot be
  checked statically. This pass does no dynamic instrumentation, so it
  can't check for all possible problems.</p>
  
  <p>Another limitation is that it assumes all code will be executed. A store
  through a null pointer in a basic block which is never reached is harmless,
  but this pass will warn about it anyway.</p>
 
  <p>Optimization passes may make conditions that this pass checks for more or
  less obvious. If an optimization pass appears to be introducing a warning,
  it may be that the optimization pass is merely exposing an existing
  condition in the code.</p>
  
  <p>This code may be run before instcombine. In many cases, instcombine checks
  for the same kinds of things and turns instructions with undefined behavior
  into unreachable (or equivalent). Because of this, this pass makes some
  effort to look through bitcasts and so on.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loops">-loops: Natural Loop Information</a>
</h3>
<div>
  <p>
  This analysis is used to identify natural loops and determine the loop depth
  of various nodes of the CFG.  Note that the loops identified may actually be
  several natural loops that share the same header node... not just a single
  natural loop.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="memdep">-memdep: Memory Dependence Analysis</a>
</h3>
<div>
  <p>
  An analysis that determines, for a given memory operation, what preceding 
  memory operations it depends on.  It builds on alias analysis information, and 
  tries to provide a lazy, caching interface to a common kind of alias 
  information query.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
</h3>
<div>
  <p>This pass decodes the debug info metadata in a module and prints in a
 (sufficiently-prepared-) human-readable form.

 For example, run this pass from opt along with the -analyze option, and
 it'll print to standard output.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
</h3>
<div>
  <p>
  This is the default implementation of the Alias Analysis interface. It always
  returns "I don't know" for alias queries.  NoAA is unlike other alias analysis
  implementations, in that it does not chain to a previous analysis. As such it
  doesn't follow many of the rules that other alias analyses must.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="no-profile">-no-profile: No Profile Information</a>
</h3>
<div>
  <p>
  The default "no profile" implementation of the abstract
  <code>ProfileInfo</code> interface.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
</h3>
<div>
  <p>
  This pass is a simple post-dominator construction algorithm for finding
  post-dominator frontiers.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
</h3>
<div>
  <p>
  This pass is a simple post-dominator construction algorithm for finding
  post-dominators.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
</h3>
<div>
  <p>Yet to be written.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-callgraph">-print-callgraph: Print a call graph</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the call graph to
  standard error in a human-readable form.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the SCCs of the call
  graph to standard error in a human-readable form.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints the SCCs of each
  function CFG to standard error in a human-readable form.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
</h3>
<div>
  <p>Pass that prints instructions, and associated debug info:</p>
  <ul>
  
  <li>source/line/col information</li>
  <li>original variable name</li>
  <li>original type name</li>
  </ul>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
</h3>
<div>
  <p>Dominator Info Printer.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
</h3>
<div>
  <p>
  This pass, only available in <code>opt</code>, prints out call sites to
  external functions that are called with constant arguments.  This can be
  useful when looking for standard library functions we should constant fold
  or handle in alias analyses.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-function">-print-function: Print function to stderr</a>
</h3>
<div>
  <p>
  The <code>PrintFunctionPass</code> class is designed to be pipelined with
  other <code>FunctionPass</code>es, and prints out the functions of the module
  as they are processed.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-module">-print-module: Print module to stderr</a>
</h3>
<div>
  <p>
  This pass simply prints out the entire module when it is executed.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="print-used-types">-print-used-types: Find Used Types</a>
</h3>
<div>
  <p>
  This pass is used to seek out all of the types in use by the program.  Note
  that this analysis explicitly does not include types only used by the symbol
  table.
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
</h3>
<div>
  <p>Profiling information that estimates the profiling information 
  in a very crude and unimaginative way.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
</h3>
<div>
  <p>
  A concrete implementation of profiling information that loads the information
  from a profile dump file.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
</h3>
<div>
  <p>Pass that checks profiling information for plausibility.</p>
</div>
<h3>
  <a name="regions">-regions: Detect single entry single exit regions</a>
</h3>
<div>
  <p>
  The <code>RegionInfo</code> pass detects single entry single exit regions in a
  function, where a region is defined as any subgraph that is connected to the
  remaining graph at only two spots. Furthermore, an hierarchical region tree is
  built.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
</h3>
<div>
  <p>
  The <code>ScalarEvolution</code> analysis can be used to analyze and
  catagorize scalar expressions in loops.  It specializes in recognizing general
  induction variables, representing them with the abstract and opaque
  <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
  important properties can be obtained.
  </p>
  
  <p>
  This analysis is primarily useful for induction variable substitution and
  strength reduction.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
</h3>
<div>
  <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
 
  This differs from traditional loop dependence analysis in that it tests
  for dependencies within a single iteration of a loop, rather than
  dependencies between different iterations.
 
  ScalarEvolution has a more complete understanding of pointer arithmetic
  than BasicAliasAnalysis' collection of ad-hoc analyses.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="targetdata">-targetdata: Target Data Layout</a>
</h3>
<div>
  <p>Provides other passes access to information on how the size and alignment
  required by the the target ABI for various data types.</p>
</div>

</div>

<!-- ======================================================================= -->
<h2><a name="transforms">Transform Passes</a></h2>
<div>
  <p>This section describes the LLVM Transform Passes.</p>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="adce">-adce: Aggressive Dead Code Elimination</a>
</h3>
<div>
  <p>ADCE aggressively tries to eliminate code. This pass is similar to
  <a href="#dce">DCE</a> but it assumes that values are dead until proven 
  otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to 
  the liveness of values.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
</h3>
<div>
  <p>A custom inliner that handles only functions that are marked as 
  "always inline".</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
</h3>
<div>
  <p>
  This pass promotes "by reference" arguments to be "by value" arguments.  In
  practice, this means looking for internal functions that have pointer
  arguments.  If it can prove, through the use of alias analysis, that an
  argument is *only* loaded, then it can pass the value into the function
  instead of the address of the value.  This can cause recursive simplification
  of code and lead to the elimination of allocas (especially in C++ template
  code like the STL).
  </p>
  
  <p>
  This pass also handles aggregate arguments that are passed into a function,
  scalarizing them if the elements of the aggregate are only loaded.  Note that
  it refuses to scalarize aggregates which would require passing in more than
  three operands to the function, because passing thousands of operands for a
  large array or structure is unprofitable!
  </p>
  
  <p>
  Note that this transformation could also be done for arguments that are only
  stored to (returning the value instead), but does not currently.  This case
  would be best handled when and if LLVM starts supporting multiple return
  values from functions.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="bb-vectorize">-bb-vectorize: Basic-Block Vectorization</a>
</h3>
<div>
  <p>This pass combines instructions inside basic blocks to form vector
  instructions. It iterates over each basic block, attempting to pair
  compatible instructions, repeating this process until no additional
  pairs are selected for vectorization. When the outputs of some pair
  of compatible instructions are used as inputs by some other pair of
  compatible instructions, those pairs are part of a potential
  vectorization chain. Instruction pairs are only fused into vector
  instructions when they are part of a chain longer than some
  threshold length. Moreover, the pass attempts to find the best
  possible chain for each pair of compatible instructions. These
  heuristics are intended to prevent vectorization in cases where
  it would not yield a performance increase of the resulting code.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
</h3>
<div>
  <p>This pass is a very simple profile guided basic block placement algorithm.
  The idea is to put frequently executed blocks together at the start of the
  function and hopefully increase the number of fall-through conditional
  branches.  If there is no profile information for a particular function, this
  pass basically orders blocks in depth-first order.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
</h3>
<div>
  <p>
  Break all of the critical edges in the CFG by inserting a dummy basic block.
  It may be "required" by passes that cannot deal with critical edges. This
  transformation obviously invalidates the CFG, but can update forward dominator
  (set, immediate dominators, tree, and frontier) information.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
</h3>
<div>
  This pass munges the code in the input function to better prepare it for
  SelectionDAG-based code generation. This works around limitations in it's
  basic-block-at-a-time approach. It should eventually be removed.
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
</h3>
<div>
  <p>
  Merges duplicate global constants together into a single constant that is
  shared.  This is useful because some passes (ie TraceValues) insert a lot of
  string constants into the program, regardless of whether or not an existing
  string is available.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="constprop">-constprop: Simple constant propagation</a>
</h3>
<div>
  <p>This file implements constant propagation and merging. It looks for
  instructions involving only constant operands and replaces them with a
  constant value instead of an instruction. For example:</p>
  <blockquote><pre>add i32 1, 2</pre></blockquote>
  <p>becomes</p>
  <blockquote><pre>i32 3</pre></blockquote>
  <p>NOTE: this pass has a habit of making definitions be dead.  It is a good 
  idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass 
  sometime after running this pass.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dce">-dce: Dead Code Elimination</a>
</h3>
<div>
  <p>
  Dead code elimination is similar to <a href="#die">dead instruction
  elimination</a>, but it rechecks instructions that were used by removed
  instructions to see if they are newly dead.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
</h3>
<div>
  <p>
  This pass deletes dead arguments from internal functions.  Dead argument
  elimination removes arguments which are directly dead, as well as arguments
  only passed into function calls as dead arguments of other functions.  This
  pass also deletes dead arguments in a similar way.
  </p>
  
  <p>
  This pass is often useful as a cleanup pass to run after aggressive
  interprocedural passes, which add possibly-dead arguments.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
</h3>
<div>
  <p>
  This pass is used to cleanup the output of GCC.  It eliminate names for types
  that are unused in the entire translation unit, using the <a
  href="#findusedtypes">find used types</a> pass.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="die">-die: Dead Instruction Elimination</a>
</h3>
<div>
  <p>
  Dead instruction elimination performs a single pass over the function,
  removing instructions that are obviously dead.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="dse">-dse: Dead Store Elimination</a>
</h3>
<div>
  <p>
  A trivial dead store elimination that only considers basic-block local
  redundant stores.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="functionattrs">-functionattrs: Deduce function attributes</a>
</h3>
<div>
  <p>A simple interprocedural pass which walks the call-graph, looking for 
  functions which do not access or only read non-local memory, and marking them 
  readnone/readonly.  In addition, it marks function arguments (of pointer type) 
  'nocapture' if a call to the function does not create any copies of the pointer 
  value that outlive the call. This more or less means that the pointer is only
  dereferenced, and not returned from the function or stored in a global.
  This pass is implemented as a bottom-up traversal of the call-graph.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="globaldce">-globaldce: Dead Global Elimination</a>
</h3>
<div>
  <p>
  This transform is designed to eliminate unreachable internal globals from the
  program.  It uses an aggressive algorithm, searching out globals that are
  known to be alive.  After it finds all of the globals which are needed, it
  deletes whatever is left over.  This allows it to delete recursive chunks of
  the program which are unreachable.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="globalopt">-globalopt: Global Variable Optimizer</a>
</h3>
<div>
  <p>
  This pass transforms simple global variables that never have their address
  taken.  If obviously true, it marks read/write globals as constant, deletes
  variables only stored to, etc.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="gvn">-gvn: Global Value Numbering</a>
</h3>
<div>
  <p>
  This pass performs global value numbering to eliminate fully and partially
  redundant instructions.  It also performs redundant load elimination.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="indvars">-indvars: Canonicalize Induction Variables</a>
</h3>
<div>
  <p>
  This transformation analyzes and transforms the induction variables (and
  computations derived from them) into simpler forms suitable for subsequent
  analysis and transformation.
  </p>
  
  <p>
  This transformation makes the following changes to each loop with an
  identifiable induction variable:
  </p>
  
  <ol>
    <li>All loops are transformed to have a <em>single</em> canonical
        induction variable which starts at zero and steps by one.</li>
    <li>The canonical induction variable is guaranteed to be the first PHI node
        in the loop header block.</li>
    <li>Any pointer arithmetic recurrences are raised to use array
        subscripts.</li>
  </ol>
  
  <p>
  If the trip count of a loop is computable, this pass also makes the following
  changes:
  </p>
  
  <ol>
    <li>The exit condition for the loop is canonicalized to compare the
        induction value against the exit value.  This turns loops like:
        <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
        into
        <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
    <li>Any use outside of the loop of an expression derived from the indvar
        is changed to compute the derived value outside of the loop, eliminating
        the dependence on the exit value of the induction variable.  If the only
        purpose of the loop is to compute the exit value of some derived
        expression, this transformation will make the loop dead.</li>
  </ol>
  
  <p>
  This transformation should be followed by strength reduction after all of the
  desired loop transformations have been performed.  Additionally, on targets
  where it is profitable, the loop could be transformed to count down to zero
  (the "do loop" optimization).
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="inline">-inline: Function Integration/Inlining</a>
</h3>
<div>
  <p>
  Bottom-up inlining of functions into callees.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
</h3>
<div>
  <p>
  This pass instruments the specified program with counters for edge profiling.
  Edge profiling can give a reasonable approximation of the hot paths through a
  program, and is used for a wide variety of program transformations.
  </p>
  
  <p>
  Note that this implementation is very naïve.  It inserts a counter for
  <em>every</em> edge in the program, instead of using control flow information
  to prune the number of counters inserted.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
</h3>
<div>
  <p>This pass instruments the specified program with counters for edge profiling.
  Edge profiling can give a reasonable approximation of the hot paths through a
  program, and is used for a wide variety of program transformations.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="instcombine">-instcombine: Combine redundant instructions</a>
</h3>
<div>
  <p>
  Combine instructions to form fewer, simple
  instructions.  This pass does not modify the CFG This pass is where algebraic
  simplification happens.
  </p>
  
  <p>
  This pass combines things like:
  </p>
  
<blockquote><pre
>%Y = add i32 %X, 1
%Z = add i32 %Y, 1</pre></blockquote>
  
  <p>
  into:
  </p>

<blockquote><pre
>%Z = add i32 %X, 2</pre></blockquote>
  
  <p>
  This is a simple worklist driven algorithm.
  </p>
  
  <p>
  This pass guarantees that the following canonicalizations are performed on
  the program:
  </p>

  <ul>
    <li>If a binary operator has a constant operand, it is moved to the right-
        hand side.</li>
    <li>Bitwise operators with constant operands are always grouped so that
        shifts are performed first, then <code>or</code>s, then
        <code>and</code>s, then <code>xor</code>s.</li>
    <li>Compare instructions are converted from <code>&lt;</code>,
        <code>&gt;</code>, <code></code>, or <code></code> to
        <code>=</code> or <code></code> if possible.</li>
    <li>All <code>cmp</code> instructions on boolean values are replaced with
        logical operations.</li>
    <li><code>add <var>X</var>, <var>X</var></code> is represented as
        <code>mul <var>X</var>, 2</code><code>shl <var>X</var>, 1</code></li>
    <li>Multiplies with a constant power-of-two argument are transformed into
        shifts.</li>
    <li>… etc.</li>
  </ul>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="internalize">-internalize: Internalize Global Symbols</a>
</h3>
<div>
  <p>
  This pass loops over all of the functions in the input module, looking for a
  main function.  If a main function is found, all other functions and all
  global variables with initializers are marked as internal.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
</h3>
<div>
  <p>
  This pass implements an <em>extremely</em> simple interprocedural constant
  propagation pass.  It could certainly be improved in many different ways,
  like using a worklist.  This pass makes arguments dead, but does not remove
  them.  The existing dead argument elimination pass should be run after this
  to clean up the mess.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
</h3>
<div>
  <p>
  An interprocedural variant of <a href="#sccp">Sparse Conditional Constant 
  Propagation</a>.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="jump-threading">-jump-threading: Jump Threading</a>
</h3>
<div>
  <p>
  Jump threading tries to find distinct threads of control flow running through
  a basic block. This pass looks at blocks that have multiple predecessors and
  multiple successors.  If one or more of the predecessors of the block can be
  proven to always cause a jump to one of the successors, we forward the edge
  from the predecessor to the successor by duplicating the contents of this
  block.
  </p>
  <p>
  An example of when this can occur is code like this:
  </p>

  <pre
>if () { ...
  X = 4;
}
if (X &lt; 3) {</pre>

  <p>
  In this case, the unconditional branch at the end of the first if can be
  revectored to the false side of the second if.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
</h3>
<div>
  <p>
  This pass transforms loops by placing phi nodes at the end of the loops for
  all values that are live across the loop boundary.  For example, it turns
  the left into the right code:
  </p>
  
  <pre
>for (...)                for (...)
  if (c)                   if (c)
    X1 = ...                 X1 = ...
  else                     else
    X2 = ...                 X2 = ...
  X3 = phi(X1, X2)         X3 = phi(X1, X2)
... = X3 + 4              X4 = phi(X3)
                          ... = X4 + 4</pre>
  
  <p>
  This is still valid LLVM; the extra phi nodes are purely redundant, and will
  be trivially eliminated by <code>InstCombine</code>.  The major benefit of
  this transformation is that it makes many other loop optimizations, such as 
  LoopUnswitching, simpler.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="licm">-licm: Loop Invariant Code Motion</a>
</h3>
<div>
  <p>
  This pass performs loop invariant code motion, attempting to remove as much
  code from the body of a loop as possible.  It does this by either hoisting
  code into the preheader block, or by sinking code to the exit blocks if it is
  safe.  This pass also promotes must-aliased memory locations in the loop to
  live in registers, thus hoisting and sinking "invariant" loads and stores.
  </p>
  
  <p>
  This pass uses alias analysis for two purposes:
  </p>
  
  <ul>
    <li>Moving loop invariant loads and calls out of loops.  If we can determine
        that a load or call inside of a loop never aliases anything stored to,
        we can hoist it or sink it like any other instruction.</li>
    <li>Scalar Promotion of Memory - If there is a store instruction inside of
        the loop, we try to move the store to happen AFTER the loop instead of
        inside of the loop.  This can only happen if a few conditions are true:
        <ul>
          <li>The pointer stored through is loop invariant.</li>
          <li>There are no stores or loads in the loop which <em>may</em> alias
              the pointer.  There are no calls in the loop which mod/ref the
              pointer.</li>
        </ul>
        If these conditions are true, we can promote the loads and stores in the
        loop of the pointer to use a temporary alloca'd variable.  We then use
        the mem2reg functionality to construct the appropriate SSA form for the
        variable.</li>
  </ul>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
</h3>
<div>
  <p>
  This file implements the Dead Loop Deletion Pass.  This pass is responsible
  for eliminating loops with non-infinite computable trip counts that have no
  side effects or volatile instructions, and do not contribute to the
  computation of the function's return value.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
</h3>
<div>
  <p>
  A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to 
  extract each top-level loop into its own new function. If the loop is the
  <em>only</em> loop in a given function, it is not touched. This is a pass most
  useful for debugging via bugpoint.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
</h3>
<div>
  <p>
  Similar to <a href="#loop-extract">Extract loops into new functions</a>,
  this pass extracts one natural loop from the program into a function if it
  can. This is used by bugpoint.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
</h3>
<div>
  <p>
  This pass performs a strength reduction on array references inside loops that
  have as one or more of their components the loop induction variable.  This is
  accomplished by creating a new value to hold the initial value of the array
  access for the first iteration, and then creating a new GEP instruction in
  the loop to increment the value by the appropriate amount.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
</h3>
<div>
  <p>A simple loop rotation transformation.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
</h3>
<div>
  <p>
  This pass performs several transformations to transform natural loops into a
  simpler form, which makes subsequent analyses and transformations simpler and
  more effective.
  </p>
  
  <p>
  Loop pre-header insertion guarantees that there is a single, non-critical
  entry edge from outside of the loop to the loop header.  This simplifies a
  number of analyses and transformations, such as LICM.
  </p>
  
  <p>
  Loop exit-block insertion guarantees that all exit blocks from the loop
  (blocks which are outside of the loop that have predecessors inside of the
  loop) only have predecessors from inside of the loop (and are thus dominated
  by the loop header).  This simplifies transformations such as store-sinking
  that are built into LICM.
  </p>
  
  <p>
  This pass also guarantees that loops will have exactly one backedge.
  </p>
  
  <p>
  Note that the simplifycfg pass will clean up blocks which are split out but
  end up being unnecessary, so usage of this pass should not pessimize
  generated code.
  </p>
  
  <p>
  This pass obviously modifies the CFG, but updates loop information and
  dominator information.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-unroll">-loop-unroll: Unroll loops</a>
</h3>
<div>
  <p>
  This pass implements a simple loop unroller.  It works best when loops have
  been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
  allowing it to determine the trip counts of loops easily.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
</h3>
<div>
  <p>
  This pass transforms loops that contain branches on loop-invariant conditions
  to have multiple loops.  For example, it turns the left into the right code:
  </p>
  
  <pre
>for (...)                  if (lic)
  A                          for (...)
  if (lic)                     A; B; C
    B                      else
  C                          for (...)
                               A; C</pre>
  
  <p>
  This can increase the size of the code exponentially (doubling it every time
  a loop is unswitched) so we only unswitch if the resultant code will be
  smaller than a threshold.
  </p>
  
  <p>
  This pass expects LICM to be run before it to hoist invariant conditions out
  of the loop, to make the unswitching opportunity obvious.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
</h3>
<div>
  <p>
  This pass lowers atomic intrinsics to non-atomic form for use in a known
  non-preemptible environment.
  </p>

  <p>
  The pass does not verify that the environment is non-preemptible (in
  general this would require knowledge of the entire call graph of the
  program including any libraries which may not be available in bitcode form);
  it simply lowers every atomic intrinsic.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
</h3>
<div>
  <p>
  This transformation is designed for use by code generators which do not yet
  support stack unwinding.  This pass supports two models of exception handling
  lowering, the 'cheap' support and the 'expensive' support.
  </p>
  
  <p>
  'Cheap' exception handling support gives the program the ability to execute
  any program which does not "throw an exception", by turning 'invoke'
  instructions into calls and by turning 'unwind' instructions into calls to
  abort().  If the program does dynamically use the unwind instruction, the
  program will print a message then abort.
  </p>
  
  <p>
  'Expensive' exception handling support gives the full exception handling
  support to the program at the cost of making the 'invoke' instruction
  really expensive.  It basically inserts setjmp/longjmp calls to emulate the
  exception handling as necessary.
  </p>
  
  <p>
  Because the 'expensive' support slows down programs a lot, and EH is only
  used for a subset of the programs, it must be specifically enabled by the
  <tt>-enable-correct-eh-support</tt> option.
  </p>
  
  <p>
  Note that after this pass runs the CFG is not entirely accurate (exceptional
  control flow edges are not correct anymore) so only very simple things should
  be done after the lowerinvoke pass has run (like generation of native code).
  This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
  support the invoke instruction yet" lowering pass.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
</h3>
<div>
  <p>
  Rewrites <tt>switch</tt> instructions with a sequence of branches, which
  allows targets to get away with not implementing the switch instruction until
  it is convenient.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
</h3>
<div>
  <p>
  This file promotes memory references to be register references.  It promotes
  <tt>alloca</tt> instructions which only have <tt>load</tt>s and
  <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
  frontiers to place <tt>phi</tt> nodes, then traversing the function in
  depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
  appropriate. This is just the standard SSA construction algorithm to construct
  "pruned" SSA form.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
</h3>
<div>
  <p>
  This pass performs various transformations related to eliminating memcpy
  calls, or transforming sets of stores into memset's.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="mergefunc">-mergefunc: Merge Functions</a>
</h3>
<div>
  <p>This pass looks for equivalent functions that are mergable and folds them.
 
  A hash is computed from the function, based on its type and number of
  basic blocks.
 
  Once all hashes are computed, we perform an expensive equality comparison
  on each function pair. This takes n^2/2 comparisons per bucket, so it's
  important that the hash function be high quality. The equality comparison
  iterates through each instruction in each basic block.
 
  When a match is found the functions are folded. If both functions are
  overridable, we move the functionality into a new internal function and
  leave two overridable thunks to it.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
</h3>
<div>
  <p>
  Ensure that functions have at most one <tt>ret</tt> instruction in them.
  Additionally, it keeps track of which node is the new exit node of the CFG.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
</h3>
<div>
  <p>This pass performs partial inlining, typically by inlining an if 
  statement that surrounds the body of the function.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
</h3>
<div>
  <p>
  This file implements a simple interprocedural pass which walks the call-graph,
  turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
  only if the callee cannot throw an exception. It implements this as a
  bottom-up traversal of the call-graph.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="reassociate">-reassociate: Reassociate expressions</a>
</h3>
<div>
  <p>
  This pass reassociates commutative expressions in an order that is designed
  to promote better constant propagation, GCSE, LICM, PRE, etc.
  </p>
  
  <p>
  For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
  </p>
  
  <p>
  In the implementation of this algorithm, constants are assigned rank = 0,
  function arguments are rank = 1, and other values are assigned ranks
  corresponding to the reverse post order traversal of current function
  (starting at 2), which effectively gives values in deep loops higher rank
  than values not in loops.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
</h3>
<div>
  <p>
  This file demotes all registers to memory references.  It is intented to be
  the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
  <tt>load</tt> instructions, the only values live across basic blocks are
  <tt>alloca</tt> instructions and <tt>load</tt> instructions before
  <tt>phi</tt> nodes. It is intended that this should make CFG hacking much 
  easier. To make later hacking easier, the entry block is split into two, such
  that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
  entry block.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
</h3>
<div>
  <p>
  The well-known scalar replacement of aggregates transformation.  This
  transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
  or array) into individual <tt>alloca</tt> instructions for each member if
  possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
  instructions into nice clean scalar SSA form.
  </p>
  
  <p>
  This combines a simple scalar replacement of aggregates algorithm with the <a
  href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact, 
  especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>, 
  then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to 
  promote works well.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
</h3>
<div>
  <p>
  Sparse conditional constant propagation and merging, which can be summarized
  as:
  </p>
  
  <ol>
    <li>Assumes values are constant unless proven otherwise</li>
    <li>Assumes BasicBlocks are dead unless proven otherwise</li>
    <li>Proves values to be constant, and replaces them with constants</li>
    <li>Proves conditional branches to be unconditional</li>
  </ol>
  
  <p>
  Note that this pass has a habit of making definitions be dead.  It is a good
  idea to to run a DCE pass sometime after running this pass.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
</h3>
<div>
  <p>
  Applies a variety of small optimizations for calls to specific well-known 
  function calls (e.g. runtime library functions). For example, a call
   <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be 
   transformed into simply <tt>return 3</tt>.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
</h3>
<div>
  <p>
  Performs dead code elimination and basic block merging. Specifically:
  </p>
  
  <ol>
    <li>Removes basic blocks with no predecessors.</li>
    <li>Merges a basic block into its predecessor if there is only one and the
        predecessor only has one successor.</li>
    <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
    <li>Eliminates a basic block that only contains an unconditional
        branch.</li>
  </ol>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="sink">-sink: Code sinking</a>
</h3>
<div>
  <p>This pass moves instructions into successor blocks, when possible, so that
 they aren't executed on paths where their results aren't needed.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
</h3>
<div>
  <p>
  This pass finds functions that return a struct (using a pointer to the struct
  as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
  replaces them with a new function that simply returns each of the elements of
  that struct (using multiple return values).
  </p>

  <p>
  This pass works under a number of conditions:
  </p>

  <ul>
  <li>The returned struct must not contain other structs</li>
  <li>The returned struct must only be used to load values from</li>
  <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
  </ul>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="strip">-strip: Strip all symbols from a module</a>
</h3>
<div>
  <p>
  performs code stripping. this transformation can delete:
  </p>
  
  <ol>
    <li>names for virtual registers</li>
    <li>symbols for internal globals and functions</li>
    <li>debug information</li>
  </ol>
  
  <p>
  note that this transformation makes code much less readable, so it should
  only be used in situations where the <tt>strip</tt> utility would be used,
  such as reducing code size or making it harder to reverse engineer code.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
</h3>
<div>
  <p>
  performs code stripping. this transformation can delete:
  </p>
  
  <ol>
    <li>names for virtual registers</li>
    <li>symbols for internal globals and functions</li>
    <li>debug information</li>
  </ol>
  
  <p>
  note that this transformation makes code much less readable, so it should
  only be used in situations where the <tt>strip</tt> utility would be used,
  such as reducing code size or making it harder to reverse engineer code.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
</h3>
<div>
  <p>
  This pass loops over all of the functions in the input module, looking for
  dead declarations and removes them. Dead declarations are declarations of
  functions for which no implementation is available (i.e., declarations for
  unused library functions).
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
</h3>
<div>
  <p>This pass implements code stripping. Specifically, it can delete:</p>
  <ul>
  <li>names for virtual registers</li>
  <li>symbols for internal globals and functions</li>
  <li>debug information</li>
  </ul>
  <p>
  Note that this transformation makes code much less readable, so it should
  only be used in situations where the 'strip' utility would be used, such as
  reducing code size or making it harder to reverse engineer code.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
</h3>
<div>
  <p>This pass implements code stripping. Specifically, it can delete:</p>
  <ul>
  <li>names for virtual registers</li>
  <li>symbols for internal globals and functions</li>
  <li>debug information</li>
  </ul>
  <p>
  Note that this transformation makes code much less readable, so it should
  only be used in situations where the 'strip' utility would be used, such as
  reducing code size or making it harder to reverse engineer code.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
</h3>
<div>
  <p>
  This file transforms calls of the current function (self recursion) followed
  by a return instruction with a branch to the entry of the function, creating
  a loop.  This pass also implements the following extensions to the basic
  algorithm:
  </p>
  
  <ul>
  <li>Trivial instructions between the call and return do not prevent the
      transformation from taking place, though currently the analysis cannot
      support moving any really useful instructions (only dead ones).
  <li>This pass transforms functions that are prevented from being tail
      recursive by an associative expression to use an accumulator variable,
      thus compiling the typical naive factorial or <tt>fib</tt> implementation
      into efficient code.
  <li>TRE is performed if the function returns void, if the return
      returns the result returned by the call, or if the function returns a
      run-time constant on all exits from the function.  It is possible, though
      unlikely, that the return returns something else (like constant 0), and
      can still be TRE'd.  It can be TRE'd if <em>all other</em> return 
      instructions in the function return the exact same value.
  <li>If it can prove that callees do not access theier caller stack frame,
      they are marked as eligible for tail call elimination (by the code
      generator).
  </ul>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
</h3>
<div>
  <p>
  This pass performs a limited form of tail duplication, intended to simplify
  CFGs by removing some unconditional branches.  This pass is necessary to
  straighten out loops created by the C front-end, but also is capable of
  making other code nicer.  After this pass is run, the CFG simplify pass
  should be run to clean up the mess.
  </p>
</div>

</div>

<!-- ======================================================================= -->
<h2><a name="utilities">Utility Passes</a></h2>
<div>
  <p>This section describes the LLVM Utility Passes.</p>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
</h3>
<div>
  <p>
  Same as dead argument elimination, but deletes arguments to functions which
  are external.  This is only for use by <a
  href="Bugpoint.html">bugpoint</a>.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
</h3>
<div>
  <p>
  This pass is used by bugpoint to extract all blocks from the module into their
  own functions.</p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
</h3>
<div>
  <p>This is a little utility pass that gives instructions names, this is mostly
 useful when diffing the effect of an optimization because deleting an
 unnamed instruction can change all other instruction numbering, making the
 diff very noisy.  
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="preverify">-preverify: Preliminary module verification</a>
</h3>
<div>
  <p>
  Ensures that the module is in the form required by the <a
  href="#verifier">Module Verifier</a> pass.
  </p>
  
  <p>
  Running the verifier runs this pass automatically, so there should be no need
  to use it directly.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="verify">-verify: Module Verifier</a>
</h3>
<div>
  <p>
  Verifies an LLVM IR code. This is useful to run after an optimization which is
  undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
  emitting bitcode, and also that malformed bitcode is likely to make LLVM
  crash. All language front-ends are therefore encouraged to verify their output
  before performing optimizing transformations.
  </p>

  <ul>
    <li>Both of a binary operator's parameters are of the same type.</li>
    <li>Verify that the indices of mem access instructions match other
        operands.</li>
    <li>Verify that arithmetic and other things are only performed on
        first-class types.  Verify that shifts and logicals only happen on
        integrals f.e.</li>
    <li>All of the constants in a switch statement are of the correct type.</li>
    <li>The code is in valid SSA form.</li>
    <li>It is illegal to put a label into any other type (like a structure) or 
        to return one.</li>
    <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
        invalid.</li>
    <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
    <li>PHI nodes must be the first thing in a basic block, all grouped
        together.</li>
    <li>PHI nodes must have at least one entry.</li>
    <li>All basic blocks should only end with terminator insts, not contain
        them.</li>
    <li>The entry node to a function must not have predecessors.</li>
    <li>All Instructions must be embedded into a basic block.</li>
    <li>Functions cannot take a void-typed parameter.</li>
    <li>Verify that a function's argument list agrees with its declared
        type.</li>
    <li>It is illegal to specify a name for a void value.</li>
    <li>It is illegal to have a internal global value with no initializer.</li>
    <li>It is illegal to have a ret instruction that returns a value that does
        not agree with the function return value type.</li>
    <li>Function call argument types match the function prototype.</li>
    <li>All other things that are tested by asserts spread about the code.</li>
  </ul>
  
  <p>
  Note that this does not provide full security verification (like Java), but
  instead just tries to ensure that code is well-formed.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-cfg">-view-cfg: View CFG of function</a>
</h3>
<div>
  <p>
  Displays the control flow graph using the GraphViz tool.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
</h3>
<div>
  <p>
  Displays the control flow graph using the GraphViz tool, but omitting function
  bodies.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-dom">-view-dom: View dominance tree of function</a>
</h3>
<div>
  <p>
  Displays the dominator tree using the GraphViz tool.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
</h3>
<div>
  <p>
  Displays the dominator tree using the GraphViz tool, but omitting function
  bodies.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
</h3>
<div>
  <p>
  Displays the post dominator tree using the GraphViz tool.
  </p>
</div>

<!-------------------------------------------------------------------------- -->
<h3>
  <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
</h3>
<div>
  <p>
  Displays the post dominator tree using the GraphViz tool, but omitting
  function bodies.
  </p>
</div>

</div>

<!-- *********************************************************************** -->

<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>

  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
  Last modified: $Date: 2012-01-31 19:51:43 -0800 (Tue, 31 Jan 2012) $
</address>

</body>
</html>