This file is indexed.

/usr/share/doc/maxima-doc/plotting/maxima-gnuplot.html is in maxima-doc 5.27.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Maxima - Documentation</title>

<!-- Meta Tags -->

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<meta name="description" content="Documentation for Maxima."/>

<meta name="keywords" content="Maxima, computer algebra, docs, documentation"/>

<!-- End Meta Tags -->

<!-- CSS (Page Layout) inclusion -->
<link rel="stylesheet" type="text/css" href="style.css"/>

</head>

<!-- Begin main document -->

<body>

<div class="title">Maxima - a sophisticated computer algebra system</div>

<div class="titlespacer"></div>

<!-- Left side menu -->

<div class="menu">
   <div class="menutitle">
   <img src="maximalogo.png" width="88" height="83" alt="Maxima Logo"/>   
   </div>
   <div class="menubutton"> 
   <a href="index.shtml">Home</a>
   </div>
   <div class="menubutton"> 
   <a href="faq/faq.html">FAQ</a>
   </div>
   <div class="menubutton"> 
   <a href="docs.shtml">Docs</a>
   </div>
   <div class="menubutton"> 
   <a href="screenshots.shtml">Screen Shots</a>
   </div>
   <div class="menubutton"> 
   <a href="download.shtml">Download</a>
   </div>
   <div class="menubutton"> 
   <a href="http://sourceforge.net/tracker/?group_id=4933&amp;atid=104933">Report Bugs</a>
   </div>
   <div class="menubutton"> 
   <a href="http://sourceforge.net/projects/maxima">Project Page</a>
   </div>   
   <div class="menubutton"> 
   <a href="releaseplans.shtml">Release Plans</a>
   </div>
   <div class="menubutton"> 
   <a href="misc.shtml">Misc</a>
   </div>
   <div class="menubutton"> 
   <a href="3rdpartycode.shtml">Third Party Maxima Code</a>
   </div>
   <div class="menubutton"> 
   <a href="relatedprojects.shtml">Related Projects</a>
   </div>
   <div class="menubutton"> 
   <a href="lisp.shtml">Lisp Links</a>
   </div>
   <div class="menubutton"> 
   <a href="compalg.shtml">Computer Algebra</a>
   </div>
   <div class="menubutton"> 
   <a href="http://maxima.sf.net/maximalist.html">Mail Lists</a>
   </div>
   <div class="imagespace">
    <a href="http://sourceforge.net"> <img src="http://sourceforge.net/sflogo.php?group_id=4933&amp;type=1" width="88" height="31" alt="SourceForge Logo"/></a>
   </div>
</div>


<!-- Main page content -->

<div class="contentbox">

<h3>Examples of the new Maxima Gnuplot interface</h3>
<div class="contentbox2">
<h4>Basic usage</h4>
The Maxima-Gnuplot interface offers three terminal choices: <em>default</em>,
<em>ps</em> and <em>dumb</em>.
<FONT color="blue"><pre>
Maxima 5.9.0.1cvs http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 18e fedora release 0.fdr.2.e.1
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(C1) plot2d(sin(x),[x,0,2*%pi]);

(D1)
</pre></FONT>
<IMG src="sin-screenshot.png" width="648" height="474" border="0">
<FONT color="blue"><pre>
(C2) plot2d(sin(x),[x,0,2*%pi],[gnuplot_term,ps],[gnuplot_out_file,"sin.eps"]);
output file "sin.eps".
(D2)
</pre></FONT>
<A href="sin.eps"><IMG src="sin.png" width="540" height="378" border="0"></A>
<br><em>Click on the above image to see the actual postscript file</em>
<FONT color="blue"><pre>
(C3) plot2d(sin(x),[x,0,2*%pi],[gnuplot_term,dumb]);



    1 ++--------+--$$$$$$$+---------+---------+---------+---------+--------++
      +         $$$      $$$        +         +         +     SIN(x) $$$$$$ +
      |       $$$           $$                                              |
      |      $$              $$$                                            |
  0.5 ++   $$                  $$                                          ++
      |   $$                    $$                                          |
      |  $$                      $$                                         |
      | $$                         $$                                       |
      |$$                           $$                                      |
    0 $+                             $$                             $$     ++
      |                               $$                           $$       |
      |                                $$                         $$        |
      |                                 $$                       $$         |
 -0.5 ++                                  $$                    $$         ++
      |                                    $$                  $            |
      |                                     $$               $$             |
      |                                       $$           $$$              |
      +         +         +         +         +$$$$     +$$$      +         +
   -1 ++--------+---------+---------+---------+---$$$$$$$---------+--------++
      0         1         2         3         4         5         6         7

(D3)
</pre></FONT>

Those of us who remember when "vt100" was not just a menu item in a terminal
editor, but an actual
thing that would hurt to drop on your foot, should find the following picture
nostalgic.
<br>
<br><IMG src="sin-nostalgic.png" width="560" height="363" border="0">
</div>

<div class="contentbox2">
<h4>More advanced usage</h4>
The new adaptive plotting routines (based on an algorithm from <A
href="http://www.xs4all.nl/~apinkus/yacas.html">yacas</A>) allow
plotting of functions with singularities.
<FONT color="blue"><pre>
(C4) plot2d([gamma(x),1/gamma(x)],[x,-4.5,5],[y,-10,10],
[gnuplot_preamble,"set key bottom"]);

(D4)
</pre></FONT>
<IMG src="gamma-screenshot.png" width="648" height="474" border="0">
<br><br>It is now possible to take advantage of the advanced features of
Gnuplot. Note the tick labels on the horizontal axis in the following figure.
<FONT color="blue"><pre>
(C5) plot2d([cos(x),sin(x),tan(x),cot(x)],[x,-2*%pi,2*%pi],[y,-2,2],
[gnuplot_preamble,"set xzeroaxis; set xtics ('-2pi' -6.283, '-3pi/2' -4.712,
'-pi' -3.1415, '-pi/2' -1.5708,  '0' 0,'pi/2' 1.5708, 'pi' 3.1415,'3pi/2' 4.712,
'2pi' 6.283)"]);

(D5)
</pre></FONT>
<IMG src="trig-screenshot.png" width="648" height="474" border="0">
<br>
<br> The postscript version of the previous figure can take advantage of
Gnuplot's enhanced postscript terminal.
<FONT color="blue"><pre>
(C6)
plot2d([cos(x),sin(x),tan(x)],[x,-2*%pi,2*%pi],[y,-2,2],[gnuplot_preamble,"set
xzeroaxis; set xtics ('-2{/Symbol p}' -6.283, '-3{/Symbol p}/2' -4.712,
'-{/Symbol p}' -3.1415, '-{/Symbol p}/2' -1.5708,  '0' 0,'{/Symbol p}/2' 1.5708,
'{/Symbol p}' 3.1415,'3{/Symbol p}/2' 4.712, '2{/Symbol p}'
6.283)"],[gnuplot_term,ps],[gnuplot_out_file,"trig.eps"]);

output file "trig.eps"
(D6)
</pre></FONT>
<A href="trig.eps"><IMG src="trig.png" width="540" height="378" border="0"></A>
<br><em>Click on the above image to see the actual postscript file</em>
<br>
</div>

<div class="contentbox2">
<h4>3D plotting and pm3d</h4>
<h5>Plotting without pm3d</h5>
The default three-dimensional plotting generates a mesh. It works with all
versions of Gnuplot.
<FONT color="blue"><pre>
(C7) plot3d(atan(-x^2+y^3/4),[x,-4,4],[y,-4,4],[grid,50,50]);

(D7)
</pre></FONT>
<br><IMG src="surface.png" width="648" height="474" border="0">
<br>
<h5>Plotting with pm3d</h5>
Gnuplot 4.0 includes pm3d, which provides many advanced options for three- and
four-dimensional plotting. Use of pm3d is turned off by default because Gnuplot
4.0 is not yet commonly installed. (Indeed, as of this writing, April 15, 2004,
Gnuplot 4.0 has not yet been officially released.) If Gnuplot 4.0 (or one of the
many earlier cvs/beta releases) is installed, Maxima can take
advantage of the features in pm3d.
<br>
<br>The default plot with pm3d includes a mesh and a colored surface.
<FONT color="blue"><pre>
(C8)
plot3d(atan(-x^2+y^3/4),[x,-4,4],[y,-4,4],[grid,50,50],[gnuplot_pm3d,true]);
(D8)
</pre></FONT>
<br><IMG src="surface-pm3d.png" width="648" height="474" border="0">
<br>
<br>Several variations are possible. Here is one with no mesh and contours on at
the base.
<FONT color="blue"><pre>
(C9)
plot3d(atan(-x^2+y^3/4),[x,-4,4],[y,-4,4],[grid,50,50],[gnuplot_pm3d,true],[gnup
lot_preamble,"set pm3d at s;unset surface;set contour;set cntrparam levels
20;unset key"]);

(D9)
</pre></FONT>
<br>
<br><IMG src="surface-pm3d-1.png" width="648" height="474" border="0">
<br>
<br>The following variation includes the mesh and puts the colors on the base.
<FONT color="blue"><pre>
(C10) surface-pm3d-2:
plot3d(atan(-x^2+y^3/4),[x,-4,4],[y,-4,4],[grid,50,50],[gnuplot_pm3d,true],[gnup
lot_preamble,"set pm3d at b"]);

(D10)
</pre></FONT>
<br>
<br><IMG src="surface-pm3d-2.png" width="648" height="474" border="0">
<br>
<br>Some functions are too complicated to be practically visualized with a mesh.
<FONT color="blue"><pre>
(C11) plot3d(cos(-x^2+y^3/4),[x,-4,4],[y,-4,4],[grid,150,150]);

(D11)
</pre></FONT>
<br><IMG src="badsurface.png" width="648" height="474" border="0">
<br>
<br>However, the above function can be effectively visualized using pm3d's "map
view."

<FONT color="blue"><pre>
(C12) plot3d(cos(-x^2+y^3/4),[x,-4,4],[y,-4,4],[gnuplot_preamble,"set view map;
unset surface"],[gnuplot_pm3d,true],[grid,150,150]);

(D12)
</pre></FONT>

<br><IMG src="map.png" width="648" height="474" border="0">
</div>


<p></p>
</div>
</body>
</html>