This file is indexed.

/usr/share/doc/mlton/guide/ConcurrentMLImplementation is in mlton-doc 20100608-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="robots" content="index,nofollow">



<title>ConcurrentMLImplementation - MLton Standard ML Compiler (SML Compiler)</title>
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="all" href="common.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="screen" href="screen.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="print" href="print.css">


<link rel="Start" href="Home">


</head>

<body lang="en" dir="ltr">

<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-833377-1";
urchinTracker();
</script>
<table bgcolor = lightblue cellspacing = 0 style = "border: 0px;" width = 100%>
  <tr>
    <td style = "
		border: 0px;
		color: darkblue; 
		font-size: 150%;
		text-align: left;">
      <a class = mltona href="Home">MLton MLTONWIKIVERSION</a>
    <td style = "
		border: 0px;
		font-size: 150%;
		text-align: center;
		width: 50%;">
      ConcurrentMLImplementation
    <td style = "
		border: 0px;
		text-align: right;">
      <table cellspacing = 0 style = "border: 0px">
        <tr style = "vertical-align: middle;">
      </table>
  <tr style = "background-color: white;">
    <td colspan = 3
	style = "
		border: 0px;
		font-size:70%;
		text-align: right;">
      <a href = "Home">Home</a>
      &nbsp;<a href = "TitleIndex">Index</a>
      &nbsp;
</table>
<div id="content" lang="en" dir="ltr">
Here are some notes on MLton's implementation of <a href="ConcurrentML">ConcurrentML</a>. <p>
Concurrent ML was originally implemented for SML/NJ.  It was ported to MLton in the summer of 2004.  The main difference between the implementations is that SML/NJ uses continuations to implement CML threads, while MLton uses its underlying <a href="MLtonThread">thread</a> package.  Presently, MLton's threads are a little more heavyweight than SML/NJ's continuations, but it's pretty clear that there is some fat there that could be trimmed. 
</p>
<p>
The implementation of CML in SML/NJ is built upon the first-class continuations of the <tt>SMLofNJ.Cont</tt> module. 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a cont
</FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> callcc: ('a cont -&gt; 'a) -&gt; 'a
<B><FONT COLOR="#A020F0">val</FONT></B> isolate: ('a -&gt; unit) -&gt; 'a cont
<B><FONT COLOR="#A020F0">val</FONT></B> throw: 'a cont -&gt; 'a -&gt; 'b
</PRE>
 
</p>
<p>
The implementation of CML in MLton is built upon the first-class threads of the <a href="MLtonThread">MLtonThread</a> module. 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t
</FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> new: ('a -&gt; unit) -&gt; 'a t
<B><FONT COLOR="#A020F0">val</FONT></B> prepare: 'a t * 'a -&gt; Runnable.t
<B><FONT COLOR="#A020F0">val</FONT></B> switch: ('a t -&gt; Runnable.t) -&gt; 'a
</PRE>
 
</p>
<p>
The port is relatively straightforward, because CML always throws to a continuation at most once.  Hence, an "abstract" implementation of CML could be built upon first-class one-shot continuations, which map equally well to SML/NJ's continuations and MLton's threads. 
</p>
<p>
The "essence" of the port is to transform: 
<pre>callcc (fn k =&gt; ... throw k' v')
</pre>to 
<pre>switch (fn t =&gt; ... prepare (t', v'))
</pre>which suffices for the vast majority of the CML implementation. 
</p>
<p>
There was only one complicated transformation: blocking multiple base events.  In SML/NJ CML, the representation of base events is given by: 
<pre class=code>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a event_status
  </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">ENABLED</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {prio: int, doFn: unit -&gt; 'a}
  </FONT></B>|<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">BLOCKED</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {
        transId: trans_id ref, 
        cleanUp: unit -&gt; unit, 
        next: unit -&gt; unit
      } -&gt; 'a
</FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a base_evt </FONT></B>=<B><FONT COLOR="#228B22"> unit -&gt; 'a event_status
</FONT></B></PRE>
 
</p>
<p>
When synchronizing on a set of base events, which are all blocked, we must invoke each <tt>BLOCKED</tt> function with the same <tt>transId</tt> and <tt>cleanUp</tt> (the <tt>transId</tt> is (checked and) set to <tt>CANCEL</tt> by the <tt>cleanUp</tt> function, which is invoked by the first enabled event; this "fizzles" every other event in the synchronization group that later becomes enabled). However, each <tt>BLOCKED</tt> function is implemented by a callcc, so that when the event is enabled, it throws back to the point of synchronization.  Hence, the next function (which doesn't return) is invoked by the <tt>BLOCKED</tt> function to escape the callcc and continue in the thread performing the synchronization.  In SML/NJ this is implemented as follows: 
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> ext ([], blockFns) = callcc (<B><FONT COLOR="#A020F0">fn</FONT></B> k =&gt; <B><FONT COLOR="#0000FF">let</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> throw = throw k
      <B><FONT COLOR="#A020F0">val</FONT></B> (transId, setFlg) = mkFlg()
      <B><FONT COLOR="#A020F0">fun</FONT></B> log [] = S.atomicDispatch ()
        | log (blockFn:: r) =
            throw (blockFn {
                transId = transId,
                cleanUp = setFlg,
                next = <B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; log r
              })
      <B><FONT COLOR="#0000FF">in</FONT></B>
        log blockFns; error <B><FONT COLOR="#BC8F8F">&quot;[log]&quot;</FONT></B>
      <B><FONT COLOR="#0000FF">end</FONT></B>)
</PRE>
 (Note that <tt>S.atomicDispatch</tt> invokes the continuation of the next continuation on the ready queue.)  This doesn't map well to the MLton thread model.  Although it follows the  
<pre>callcc (fn k =&gt; ... throw k v)
</pre>model, the fact that blockFn will also attempt to do 
<pre>callcc (fn k' =&gt; ... next ())
</pre>means that the naive transformation will result in nested switch-es. 
</p>
<p>
We need to think a little more about what this code is trying to do. Essentially, each <tt>blockFn</tt> wants to capture this continuation, hold on to it until the event is enabled, and continue with next; when the event is enabled, before invoking the continuation and returning to the synchronization point, the <tt>cleanUp</tt> and other event specific operations are performed. 
</p>
<p>
To accomplish the same effect in the MLton thread implementation, we have the following: 
<pre class=code>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a status </FONT></B>=<B><FONT COLOR="#228B22">
   <FONT COLOR="#B8860B">ENABLED</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {prio: int, doitFn: unit -&gt; 'a}
 </FONT></B>|<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">BLOCKED</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {transId: trans_id,
               cleanUp: unit -&gt; unit,
               next: unit -&gt; rdy_thread} -&gt; 'a

</FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a base </FONT></B>=<B><FONT COLOR="#228B22"> unit -&gt; 'a status 

</FONT></B><B><FONT COLOR="#A020F0">fun</FONT></B> ext ([], blockFns): 'a =
     S.atomicSwitch
     (<B><FONT COLOR="#A020F0">fn</FONT></B> (t: 'a S.thread) =&gt;
      <B><FONT COLOR="#0000FF">let</FONT></B>
         <B><FONT COLOR="#A020F0">val</FONT></B> (transId, cleanUp) = TransID.mkFlg ()
         <B><FONT COLOR="#A020F0">fun</FONT></B> log blockFns: S.rdy_thread =
            <B><FONT COLOR="#A020F0">case</FONT></B> blockFns <B><FONT COLOR="#A020F0">of</FONT></B>
               [] =&gt; S.next ()
             | blockFn::blockFns =&gt;
                  (S.prep o S.new)
                  (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; <B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt;
                   <B><FONT COLOR="#0000FF">let</FONT></B> 
                      <B><FONT COLOR="#A020F0">val</FONT></B> () = S.atomicBegin ()
                      <B><FONT COLOR="#A020F0">val</FONT></B> x = blockFn {transId = transId,
                                       cleanUp = cleanUp,
                                       next = <B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; log blockFns}
                   <B><FONT COLOR="#0000FF">in</FONT></B> S.switch(<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; S.prepVal (t, x))
                   <B><FONT COLOR="#0000FF">end</FONT></B>)
      <B><FONT COLOR="#0000FF">in</FONT></B>
         log blockFns
      <B><FONT COLOR="#0000FF">end</FONT></B>)
</PRE>
 
</p>
<p>
To avoid the nested switch-es, I run the <tt>blockFn</tt> in it's own thread, whose only purpose is to return to the synchronization point.  This corresponds to the <tt>throw&nbsp;(blockFn&nbsp;{...})</tt> in the SML/NJ implementation.  I'm worried that this implementation might be a little expensive, starting a new thread for each blocked event (when there are only multiple blocked events in a synchronization group). But, I don't see another way of implementing this behavior in the MLton thread model. 
</p>
<p>
Note that another way of thinking about what is going on is to consider each <tt>blockFn</tt> as prepending a different set of actions to the thread <tt>t</tt>.  It might be possible to give a <tt>MLton.Thread.unsafePrepend</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> unsafePrepend (T r: 'a t, f: 'b -&gt; 'a): 'b t =
   <B><FONT COLOR="#A020F0">let</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> t =
         <B><FONT COLOR="#A020F0">case</FONT></B> !r <B><FONT COLOR="#A020F0">of</FONT></B>
            Dead =&gt; <B><FONT COLOR="#A020F0">raise</FONT></B> Fail <B><FONT COLOR="#BC8F8F">&quot;prepend to a Dead thread&quot;</FONT></B>
          | New g =&gt; New (g o f)
          | Paused (g, t) =&gt; Paused (<B><FONT COLOR="#A020F0">fn</FONT></B> h =&gt; g (f o h), t)
   <B><FONT COLOR="#A020F0">in</FONT></B> <I><FONT COLOR="#B22222">(* r := Dead; *)</FONT></I>
      T (ref t)
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
I have commented out the <tt>r&nbsp;:=&nbsp;Dead</tt>, which would allow multiple prepends to the same thread (i.e., not destroying the original thread in the process).  Of course, only one of the threads could be run: if the original thread were in the <tt>Paused</tt> state, then multiple threads would share the underlying runtime/primitive thread.  Now, this matches the "one-shot" nature of CML continuations/threads, but I'm not comfortable with extending <tt>MLton.Thread</tt> with such an unsafe operation. 
</p>
<p>
Other than this complication with blocking multiple base events, the port was quite routine.  (As a very pleasant surprise, the CML implementation in SML/NJ doesn't use any SML/NJ-isms.)  There is a slight difference in the way in which critical sections are handled in SML/NJ and MLton; since <tt>MLton.Thread.switch</tt> _always_ leaves a critical section, it is sometimes necessary to add additional <tt>atomicBegin</tt>/<tt>End</tt>s to ensure that we remain in a critical section after a thread switch. 
</p>
<p>
While looking at virtually every file in the core CML implementation, I took the liberty of simplifying things where it seemed possible; in terms of style, the implementation is about half-way between Reppy's original and MLton's.   
</p>
<p>
Some changes of note: 
</p>

    <ul>

    <li>
<p>
 <tt>util/</tt> contains all pertinent data-structures: (functional and  imperative) queues, (functional) priority queues.  Hence, it should  be easier to switch in more efficient or real-time implementations. 
</p>
</li>
    <li class="gap">
<p>
 <tt>core-cml/scheduler.sml</tt>: in both implementations, this is  where most of the interesting action takes place.  I've made the  connection between <tt>MLton.Thread.t</tt>s and  <tt>ThreadId.thread_id</tt>s more abstract than it is in the SML/NJ  implementation, and encapsulated all of the <tt>MLton.Thread</tt>  operations in this module.  
</p>
</li>
    <li class="gap">
<p>
 eliminated all of the "by hand" inlining 
</p>
</li>

    </ul>


<h2 id="head-531c9b98f5b5319fbd454f61787c5cafc2812a55">Future Extensions</h2>
<p>
The CML documentation says the following: 
<pre>CML.joinEvt: thread_id -&gt; unit event
</pre>
</p>

    <ul>

 <tt>joinEvt&nbsp;tid</tt>    
        <ul>

  creates an event value for synchronizing on the termination of the   thread with the ID tid.  There are three ways that a thread may   terminate: the function that was passed to spawn (or spawnc) may   return; it may call the exit function, or it may have an uncaught   exception.  Note that <tt>joinEvt</tt> does not distinguish between   these cases; it also does not become enabled if the named thread   deadlocks (even if it is garbage collected). 
        </ul>



    </ul>


<p>
I believe that the <tt>MLton.Finalizable</tt> might be able to relax that last restriction.  Upon the creation of a <tt>'a&nbsp;Scheduler.thread</tt>, we could attach a finalizer to the underlying <tt>'a&nbsp;MLton.Thread.t</tt> that enables the <tt>joinEvt</tt> (in the associated <tt>ThreadID.thread_id</tt>) when the <tt>'a&nbsp;MLton.Thread.t</tt> becomes unreachable. 
</p>
<p>
I don't know why CML doesn't have 
</p>

<pre>CML.kill: thread_id -&gt; unit
</pre><p>
which has a fairly simple implementation -- setting a kill flag in the <tt>thread_id</tt> and adjusting the scheduler to discard any killed threads that it takes off the ready queue.  The fairness of the scheduler ensures that a killed thread will eventually be discarded. The semantics are little murky for blocked threads that are killed, though.  For example, consider a thread blocked on  <tt>SyncVar.mTake&nbsp;mv</tt> and a thread blocked on <tt>SyncVar.mGet&nbsp;mv</tt>. If the first thread is killed while blocked, and a third thread does <tt>SyncVar.mPut&nbsp;(mv,&nbsp;x)</tt>, then we might expect that we'll enable the second thread, and never the first.  But, when only the ready queue is able to discard killed threads, then the <tt>SyncVar.mPut</tt> could enable the first thread (putting it on the ready queue, from which it will be discarded) and leave the second thread blocked.  We could solve this by adjusting the <tt>TransID.trans_id&nbsp;types</tt> and the "cleaner" functions to look for both canceled transactions and transactions on killed threads. 
</p>
<p>
John Reppy says that <a href = "References#MarlowEtAl01">MarlowEtAl01</a> and <a href = "References#FlattFindler04">FlattFindler04</a> explain why <tt>CML.kill</tt> would be a bad idea. 
</p>
<p>
Between <tt>CML.timeOutEvt</tt> and <tt>CML.kill</tt>, one could give an efficient solution to the recent comp.lang.ml post about terminating a function that doesn't complete in a given time. 
<pre class=code>
  <B><FONT COLOR="#A020F0">fun</FONT></B> timeOut (f: unit -&gt; 'a, t: Time.time): 'a option =
    <B><FONT COLOR="#A020F0">let</FONT></B>
       <B><FONT COLOR="#A020F0">val</FONT></B> iv = SyncVar.iVar ()
       <B><FONT COLOR="#A020F0">val</FONT></B> tid = CML.spawn (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; SyncVar.iPut (iv, f ()))
    <B><FONT COLOR="#A020F0">in</FONT></B>
       CML.select 
       [CML.wrap (CML.timeOutEvt t, <B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; (CML.kill tid; NONE)),
        CML.wrap (SyncVar.iGetEvt iv, <B><FONT COLOR="#A020F0">fn</FONT></B> x =&gt; SOME x)]
    <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
 
</p>
<h2 id="head-77083a6d602cd5c98f0ccc3e2f7584e93ad1f737">Space Safety</h2>
<p>
There are some CML related posts on the MLton mailing list 
</p>

        <ul>

  <a class="external" href="http://mlton.org/pipermail/mlton/2004-May/"><img src="moin-www.png" alt="[WWW]" height="11" width="11">http://mlton.org/pipermail/mlton/2004-May/</a> 
        </ul>


<p>
that discuss concerns that SML/NJ's implementation is not space efficient, because multi-shot continuations can be held indefinitely on event queues.  MLton is better off because of the one-shot nature -- when an event enables a thread, all other copies of the thread waiting in other event queues get turned into dead threads (of zero size). 
</p>
</div>



<p>
<hr>
Last edited on 2007-08-15 22:05:31 by <span title="fenrir.uchicago.edu"><a href="MatthewFluet">MatthewFluet</a></span>.
</body></html>