This file is indexed.

/usr/share/doc/mlton/guide/Fixpoints is in mlton-doc 20100608-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="robots" content="index,nofollow">



<title>Fixpoints - MLton Standard ML Compiler (SML Compiler)</title>
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="all" href="common.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="screen" href="screen.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="print" href="print.css">


<link rel="Start" href="Home">


</head>

<body lang="en" dir="ltr">

<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-833377-1";
urchinTracker();
</script>
<table bgcolor = lightblue cellspacing = 0 style = "border: 0px;" width = 100%>
  <tr>
    <td style = "
		border: 0px;
		color: darkblue; 
		font-size: 150%;
		text-align: left;">
      <a class = mltona href="Home">MLton MLTONWIKIVERSION</a>
    <td style = "
		border: 0px;
		font-size: 150%;
		text-align: center;
		width: 50%;">
      Fixpoints
    <td style = "
		border: 0px;
		text-align: right;">
      <table cellspacing = 0 style = "border: 0px">
        <tr style = "vertical-align: middle;">
      </table>
  <tr style = "background-color: white;">
    <td colspan = 3
	style = "
		border: 0px;
		font-size:70%;
		text-align: right;">
      <a href = "Home">Home</a>
      &nbsp;<a href = "TitleIndex">Index</a>
      &nbsp;
</table>
<div id="content" lang="en" dir="ltr">
This page discusses a framework that makes it possible to compute fixpoints over arbitrary products of abstract types.  The code is from an Extended Basis library (<a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/README?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">README</a>). <p>
First the signature of the framework (<a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/public/generic/tie.sig?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">tie.sig</a>): 
</p>
<p>
<pre class=code><I><FONT COLOR="#B22222">(**
 * A framework for computing fixpoints.
 *
 * In a strict language you sometimes want to provide a fixpoint
 * combinator for an abstract type {t} to make it possible to write
 * recursive definitions.  Unfortunately, a single combinator {fix} of the
 * type {(t -&gt; t) -&gt; t} does not support mutual recursion.  To support
 * mutual recursion, you would need to provide a family of fixpoint
 * combinators having types of the form {(u -&gt; u) -&gt; u} where {u} is a
 * type of the form {t * ... * t}.  Unfortunately, even such a family of
 * fixpoint combinators does not support mutual recursion over different
 * abstract types.
 *)</FONT></I>
<B><FONT COLOR="#0000FF">signature</FONT></B> TIE = <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#0000FF">include</FONT></B> ETAEXP'
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> 'a etaexp
   <I><FONT COLOR="#B22222">(** The type of fixpoint witnesses. *)</FONT></I>

   </FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> fix : 'a t -&gt; 'a Fix.t
   <I><FONT COLOR="#B22222">(**
    * Produces a fixpoint combinator from the given witness.  For example,
    * one can make a mutually recursive definition of functions:
    *
    *&gt; val isEven &amp; isOdd =
    *&gt;     let open Tie in fix (function *` function) end
    *&gt;        (fn isEven &amp; isOdd =&gt;
    *&gt;            (fn 0 =&gt; true
    *&gt;              | 1 =&gt; false
    *&gt;              | n =&gt; isOdd (n-1)) &amp;
    *&gt;            (fn 0 =&gt; false
    *&gt;              | 1 =&gt; true
    *&gt;              | n =&gt; isEven (n-1)))
    *)</FONT></I>

   <I><FONT COLOR="#B22222">(** == Making New Witnesses == *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> pure : ('a * 'a UnOp.t) Thunk.t -&gt; 'a t
   <I><FONT COLOR="#B22222">(**
    * {pure} is a more general version of {tier}.  It is mostly useful for
    * computing fixpoints in a non-imperative manner.
    *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> tier : ('a * 'a Effect.t) Thunk.t -&gt; 'a t
   <I><FONT COLOR="#B22222">(**
    * {tier} is used to define fixpoint witnesses for new abstract types
    * by providing a thunk whose instantiation allocates a mutable proxy
    * and a procedure for updating it with the result.
    *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> id : 'a -&gt; 'a t
   <I><FONT COLOR="#B22222">(** {id x} is equivalent to {pure (const (x, id))}. *)</FONT></I>

   <I><FONT COLOR="#B22222">(** == Combining Existing Witnesses == *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> iso : 'b t -&gt; ('a, 'b) Iso.t -&gt; 'a t
   <I><FONT COLOR="#B22222">(**
    * Given an isomorphism between {'a} and {'b} and a witness for {'b},
    * produces a witness for {'a}.  This is useful when you have a new
    * type that is isomorphic to some old type for which you already have
    * a witness.
    *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> product : 'a t * ('a -&gt; 'b t) -&gt; ('a, 'b) Product.t t
   <I><FONT COLOR="#B22222">(**
    * Dependent product combinator.  Given a witness for {'a} and a
    * constructor from a {'a} to witness for {'b}, produces a witness for
    * the product {('a, 'b) Product.t}.  The constructor for {'b} should
    * not access the (proxy) value {'a} before it has been fixed.
    *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> *` : 'a t * 'b t -&gt; ('a, 'b) Product.t t
   <I><FONT COLOR="#B22222">(** {a *` b} is equivalent to {product (a, const b)}. *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> tuple2 : 'a t * 'b t -&gt; ('a * 'b) t
   <I><FONT COLOR="#B22222">(**
    * Given witnesses for {'a} and {'b} produces a witness for the product
    * {'a * 'b}.
    *)</FONT></I>

   <I><FONT COLOR="#B22222">(** == Particular Witnesses == *)</FONT></I>

   <B><FONT COLOR="#A020F0">val</FONT></B> function : ('a -&gt; 'b) t
   <I><FONT COLOR="#B22222">(** Witness for functions. *)</FONT></I>
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<p>
<tt>fix</tt> is a <a href="TypeIndexedValues">type-indexed</a> function.  The type-index parameter to <tt>fix</tt> is called a "witness".  To compute fixpoints over products, one uses the <tt>*`</tt> operator to combine witnesses.  To provide a fixpoint combinator for an abstract type, one implements a witness providing a thunk whose instantiation allocates a fresh, mutable proxy and a procedure for updating the proxy with the solution.  Naturally this means that not all possible ways of computing a fixpoint of a particular type are possible under the framework.  The <tt>pure</tt> combinator is a generalization of <tt>tier</tt>.  The <tt>iso</tt> combinator is provided for reusing existing witnesses. 
</p>
<p>
Note that instead of using an infix operator, we could alternatively employ an interface using <a href="Fold">Fold</a>.  Also, witnesses are eta-expanded to work around the <a href="ValueRestriction">value restriction</a>, while maintaining abstraction. 
</p>
<p>
Here is the implementation (<a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/ssh/extended-basis/unstable/detail/generic/tie.sml?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">tie.sml</a>): 
</p>
<p>
<pre class=code><B><FONT COLOR="#0000FF">structure</FONT></B> Tie :&gt; TIE = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#0000FF">open</FONT></B> Product
   <B><FONT COLOR="#A020F0">infix</FONT></B> &amp;
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a etaexp_dom </FONT></B>=<B><FONT COLOR="#228B22"> Unit.t
   </FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a etaexp_cod </FONT></B>=<B><FONT COLOR="#228B22"> ('a * 'a UnOp.t) Thunk.t
   </FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a etaexp </FONT></B>=<B><FONT COLOR="#228B22"> 'a etaexp_dom -&gt; 'a etaexp_cod
   </FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> 'a etaexp
   </FONT></B><B><FONT COLOR="#A020F0">fun</FONT></B> fix aT f = <B><FONT COLOR="#A020F0">let</FONT></B> <B><FONT COLOR="#A020F0">val</FONT></B> (a, ta) = aT () () <B><FONT COLOR="#A020F0">in</FONT></B> ta (f a) <B><FONT COLOR="#A020F0">end</FONT></B>
   <B><FONT COLOR="#A020F0">val</FONT></B> pure = Thunk.mk
   <B><FONT COLOR="#A020F0">fun</FONT></B> iso bT (iso <B><FONT COLOR="#A020F0">as</FONT></B> (_, b2a)) () () = <B><FONT COLOR="#A020F0">let</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> (b, fB) = bT () ()
   <B><FONT COLOR="#A020F0">in</FONT></B>
      (b2a b, Fn.map iso fB)
   <B><FONT COLOR="#A020F0">end</FONT></B>
   <B><FONT COLOR="#A020F0">fun</FONT></B> product (aT, a2bT) () () = <B><FONT COLOR="#A020F0">let</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> (a, fA) = aT () ()
      <B><FONT COLOR="#A020F0">val</FONT></B> (b, fB) = a2bT a () ()
   <B><FONT COLOR="#A020F0">in</FONT></B>
      (a &amp; b, Product.map (fA, fB))
   <B><FONT COLOR="#A020F0">end</FONT></B>
   <I><FONT COLOR="#B22222">(* The rest are not primitive operations. *)</FONT></I>
   <B><FONT COLOR="#A020F0">fun</FONT></B> <B><FONT COLOR="#A020F0">op</FONT></B> *` (aT, bT) = product (aT, Fn.const bT)
   <B><FONT COLOR="#A020F0">fun</FONT></B> tuple2 ab = iso (<B><FONT COLOR="#A020F0">op</FONT></B> *` ab) Product.isoTuple2
   <B><FONT COLOR="#A020F0">fun</FONT></B> tier th = pure ((<B><FONT COLOR="#A020F0">fn</FONT></B> (a, ua) =&gt; (a, Fn.const a o ua)) o th)
   <B><FONT COLOR="#A020F0">fun</FONT></B> id x = pure (Fn.const (x, Fn.id))
   <B><FONT COLOR="#A020F0">fun</FONT></B> function ? =
       pure (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; <B><FONT COLOR="#A020F0">let</FONT></B>
                   <B><FONT COLOR="#A020F0">val</FONT></B> r = ref (Basic.raising Fix.Fix)
                <B><FONT COLOR="#A020F0">in</FONT></B>
                   (<B><FONT COLOR="#A020F0">fn</FONT></B> x =&gt; !r x, <B><FONT COLOR="#A020F0">fn</FONT></B> f =&gt; (r := f ; f))
                <B><FONT COLOR="#A020F0">end</FONT></B>) ?
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<p>
Let's then take a look at a couple of additional examples. 
</p>
<p>
Here is a naive implementation of lazy promises: 
</p>

<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Promise :&gt; <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t
   </FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> lazy : 'a Thunk.t -&gt; 'a t
   <B><FONT COLOR="#A020F0">val</FONT></B> force : 'a t -&gt; 'a
   <B><FONT COLOR="#A020F0">val</FONT></B> Y : 'a t Tie.t
<B><FONT COLOR="#0000FF">end</FONT></B> = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a t' </FONT></B>=<B><FONT COLOR="#228B22">
      <FONT COLOR="#B8860B">EXN</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> exn
    </FONT></B>|<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">THUNK</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> 'a Thunk.t
    </FONT></B>|<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">VALUE</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> 'a
   </FONT></B><B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> 'a t' Ref.t
   </FONT></B><B><FONT COLOR="#A020F0">fun</FONT></B> lazy f = ref (THUNK f)
   <B><FONT COLOR="#A020F0">fun</FONT></B> force t =
      <B><FONT COLOR="#A020F0">case</FONT></B> !t
       <B><FONT COLOR="#A020F0">of</FONT></B> EXN e   =&gt; <B><FONT COLOR="#A020F0">raise</FONT></B> e
        | THUNK f =&gt; (t := VALUE (f ()) <B><FONT COLOR="#A020F0">handle</FONT></B> e =&gt; t := EXN e ; force t)
        | VALUE v =&gt; v
   <B><FONT COLOR="#A020F0">fun</FONT></B> Y ? = Tie.tier (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; <B><FONT COLOR="#A020F0">let</FONT></B>
                             <B><FONT COLOR="#A020F0">val</FONT></B> r = lazy (raising Fix.Fix)
                          <B><FONT COLOR="#A020F0">in</FONT></B>
                             (r, r &lt;\ <B><FONT COLOR="#A020F0">op</FONT></B> := o !)
                          <B><FONT COLOR="#A020F0">end</FONT></B>) ?
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
An example use of our naive lazy promises is to implement equally naive lazy streams: 
</p>

<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Stream :&gt; <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t
   </FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> cons : 'a * 'a t -&gt; 'a t
   <B><FONT COLOR="#A020F0">val</FONT></B> get : 'a t -&gt; ('a * 'a t) Option.t
   <B><FONT COLOR="#A020F0">val</FONT></B> Y : 'a t Tie.t
<B><FONT COLOR="#0000FF">end</FONT></B> = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">IN</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> ('a * 'a t) Option.t Promise.t
   </FONT></B><B><FONT COLOR="#A020F0">fun</FONT></B> cons (x, xs) = IN (Promise.lazy (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; SOME (x, xs)))
   <B><FONT COLOR="#A020F0">fun</FONT></B> get (IN p) = Promise.force p
   <B><FONT COLOR="#A020F0">fun</FONT></B> Y ? = Tie.iso Promise.Y (<B><FONT COLOR="#A020F0">fn</FONT></B> IN p =&gt; p, IN) ?
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
Note that above we make use of the <tt>iso</tt> combinator.  Here is a finite representation of an infinite stream of ones: 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> ones = <B><FONT COLOR="#A020F0">let</FONT></B>
   <B><FONT COLOR="#0000FF">open</FONT></B> Tie Stream
<B><FONT COLOR="#A020F0">in</FONT></B>
   fix Y (<B><FONT COLOR="#A020F0">fn</FONT></B> ones =&gt; cons (<B><FONT COLOR="#5F9EA0">1</FONT></B>, ones))
<B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
</div>



<p>
<hr>
Last edited on 2007-08-25 21:26:24 by <span title="cs27019070.pp.htv.fi"><a href="VesaKarvonen">VesaKarvonen</a></span>.
</body></html>