/usr/share/doc/mlton/guide/ObjectOrientedProgramming is in mlton-doc 20100608-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="robots" content="index,nofollow">
<title>ObjectOrientedProgramming - MLton Standard ML Compiler (SML Compiler)</title>
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="all" href="common.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="screen" href="screen.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="print" href="print.css">
<link rel="Start" href="Home">
</head>
<body lang="en" dir="ltr">
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-833377-1";
urchinTracker();
</script>
<table bgcolor = lightblue cellspacing = 0 style = "border: 0px;" width = 100%>
<tr>
<td style = "
border: 0px;
color: darkblue;
font-size: 150%;
text-align: left;">
<a class = mltona href="Home">MLton MLTONWIKIVERSION</a>
<td style = "
border: 0px;
font-size: 150%;
text-align: center;
width: 50%;">
ObjectOrientedProgramming
<td style = "
border: 0px;
text-align: right;">
<table cellspacing = 0 style = "border: 0px">
<tr style = "vertical-align: middle;">
</table>
<tr style = "background-color: white;">
<td colspan = 3
style = "
border: 0px;
font-size:70%;
text-align: right;">
<a href = "Home">Home</a>
<a href = "TitleIndex">Index</a>
</table>
<div id="content" lang="en" dir="ltr">
<a href="StandardML">Standard ML</a> does not have explicit support for object-oriented programming. Here are some papers that show how to express certain object-oriented concepts in SML.
<ul>
<li>
<p>
<a href = "References#Berthomieu00"> OO Programming styles in ML</a>
</p>
</li>
<li class="gap">
<p>
<a href = "References#ThorupTofte94"> Object-oriented programming and Standard ML</a>
</p>
</li>
<li class="gap">
<p>
<a href = "References#LarsenNiss04"> mGTK: An SML binding of Gtk+</a>
</p>
</li>
<li class="gap">
<p>
<a href = "References#FluetPucella02"> Phantom Types and Subtyping</a>
</p>
</li>
</ul>
<hr>
<p>
The question of OO programming in SML comes up every now and then. The following discusses a simple object-oriented (OO) programming technique in Standard ML. The reader is assumed to be able to read Java and SML code.
</p>
<h3 id="head-d6a06199cc127e571d3588aef63c79108675eabc">Motivation</h3>
<p>
SML doesn't provide subtyping, but it does provide parametric polymorphism, which can be used to encode some forms of subtyping. Most articles on OO programming in SML concentrate on such encoding techniques. While those techniques are interesting --- and it is recommended to read such articles --- and sometimes useful, it seems that basically all OO gurus agree that (deep) subtyping (or inheritance) hierarchies aren't as practical as they were thought to be in the early OO days. "Good", flexible, "OO" designs tend to have a flat structure
</p>
<pre> Interface
^
|
- - -+-------+-------+- - -
| | |
ImplA ImplB ImplC
</pre><p>
and deep inheritance hierarchies
</p>
<pre>ClassA
^
|
ClassB
^
|
ClassC
^
|
</pre><p>
tend to be signs of design mistakes. There are good underlying reasons for this, but a thorough discussion is not in the scope of this article. However, the point is that perhaps the encoding of subtyping is not as important as one might believe. In the following we ignore subtyping and rather concentrate on a very simple and basic dynamic dispatch technique.
</p>
<h3 id="head-af906b64b88d8a14633674631d41c471e32ab7ce">Dynamic Dispatch Using a Recursive Record of Functions</h3>
<p>
Quite simply, the basic idea is to implement a "virtual function table" using a record that is wrapped inside a (possibly recursive) datatype. Let's first take a look at a simple concrete example.
</p>
<p>
Consider the following Java interface:
</p>
<pre>public interface Counter {
public void inc();
public int get();
}
</pre><p>
We can translate the Counter interface to SML as follows:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> counter </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">Counter</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {inc : unit -> unit, get : unit -> int}
</FONT></B></PRE>
<p>
</p>
<p>
Each value of type <tt>counter</tt> can be thought of as an object that responds to two messages <tt>inc</tt> and <tt>get</tt>. To actually send messages to a counter, it is useful to define auxiliary functions
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">local</FONT></B>
<B><FONT COLOR="#A020F0">fun</FONT></B> mk m (Counter t) = m t ()
<B><FONT COLOR="#0000FF">in</FONT></B>
<B><FONT COLOR="#A020F0">val</FONT></B> cGet = mk#get
<B><FONT COLOR="#A020F0">val</FONT></B> cInc = mk#inc
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
that basically extract the "function table" <tt>t</tt> from a counter object and then select the specified method <tt>m</tt> from the table.
</p>
<p>
Let's then implement a simple function that increments a counter until a given maximum is reached:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> incUpto counter max = <B><FONT COLOR="#A020F0">while</FONT></B> cGet counter < max <B><FONT COLOR="#A020F0">do</FONT></B> cInc counter
</PRE>
<p>
</p>
<p>
You can easily verify that the above code compiles even without any concrete implementation of a counter, thus it is clear that it doesn't depend on a particular counter implementation.
</p>
<p>
Let's then implement a couple of counters. First consider the following Java class implementing the Counter interface given earlier.
</p>
<pre>public class BasicCounter implements Counter {
private int cnt;
public BasicCounter(int initialCnt) { this.cnt = initialCnt; }
public void inc() { this.cnt += 1; }
public int get() { return this.cnt; }
}
</pre><p>
We can translate the above to SML as follows:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> newBasicCounter initialCnt = <B><FONT COLOR="#A020F0">let</FONT></B>
<B><FONT COLOR="#A020F0">val</FONT></B> cnt = ref initialCnt
<B><FONT COLOR="#A020F0">in</FONT></B>
Counter {inc = <B><FONT COLOR="#A020F0">fn</FONT></B> () => cnt := !cnt + <B><FONT COLOR="#5F9EA0">1</FONT></B>,
get = <B><FONT COLOR="#A020F0">fn</FONT></B> () => !cnt}
<B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
</p>
<p>
The SML function <tt>newBasicCounter</tt> can be described as a constructor function for counter objects of the <tt>BasicCounter</tt> "class". We can also have other counter implementations. Here is the constructor for a counter decorator that logs messages:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> newLoggedCounter counter =
Counter {inc = <B><FONT COLOR="#A020F0">fn</FONT></B> () => (print <B><FONT COLOR="#BC8F8F">"inc\n"</FONT></B> ; cInc counter),
get = <B><FONT COLOR="#A020F0">fn</FONT></B> () => (print <B><FONT COLOR="#BC8F8F">"get\n"</FONT></B> ; cGet counter)}
</PRE>
<p>
</p>
<p>
The <tt>incUpto</tt> function works just as well with objects of either class:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> aCounter = newBasicCounter <B><FONT COLOR="#5F9EA0">0</FONT></B>
<B><FONT COLOR="#A020F0">val</FONT></B> () = incUpto aCounter <B><FONT COLOR="#5F9EA0">5</FONT></B>
<B><FONT COLOR="#A020F0">val</FONT></B> () = print (Int.toString (cGet aCounter) ^<B><FONT COLOR="#BC8F8F">"\n"</FONT></B>)
<B><FONT COLOR="#A020F0">val</FONT></B> aCounter = newLoggedCounter (newBasicCounter <B><FONT COLOR="#5F9EA0">0</FONT></B>)
<B><FONT COLOR="#A020F0">val</FONT></B> () = incUpto aCounter <B><FONT COLOR="#5F9EA0">5</FONT></B>
<B><FONT COLOR="#A020F0">val</FONT></B> () = print (Int.toString (cGet aCounter) ^<B><FONT COLOR="#BC8F8F">"\n"</FONT></B>)
</PRE>
<p>
</p>
<p>
In general, a dynamic dispatch interface is represented as a record type wrapped inside a datatype. Each field of the record corresponds to a public method or field of the object:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> interface </FONT></B>=<B><FONT COLOR="#228B22">
<FONT COLOR="#B8860B">Interface</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {method : t1 -> t2,
immutableField : t,
mutableField : t ref}
</FONT></B></PRE>
<p>
</p>
<p>
The reason for wrapping the record inside a datatype is that records, in SML, can not be recursive. However, SML datatypes can be recursive. A record wrapped in a datatype can contain fields that contain the datatype. For example, an interface such as Cloneable
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> cloneable </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">Cloneable</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {clone : unit -> cloneable}
</FONT></B></PRE>
<p>
</p>
<p>
can be represented using recursive datatypes.
</p>
<p>
Like in OO languages, interfaces are abstract and can not be instantiated to produce objects. To be able to instantiate objects, the constructors of a concrete class are needed. In SML, we can implement constructors as simple functions from arbitrary arguments to values of the interface type. Such a constructor function can encapsulate arbitrary private state and functions using lexical closure. It is also easy to share implementations of methods between two or more constructors.
</p>
<p>
While the <tt>Counter</tt> example is rather trivial, it should not be difficult to see that this technique quite simply doesn't require a huge amount of extra verbiage and is more than usable in practice.
</p>
<h3 id="head-343f19d7557070bf1d1603ce9f1f8c2f1220bd70">SML Modules and Dynamic Dispatch</h3>
<p>
One might wonder about how SML modules and the dynamic dispatch technique work together. Let's investigate! Let's use a simple dispenser framework as a concrete example. (Note that this isn't intended to be an introduction to the SML module system.)
</p>
<h4 id="head-8657a6eb69095e43b608460695dc355aaf3781a7">Programming with SML Modules</h4>
<p>
Using SML signatures we can specify abstract data types (ADTs) such as dispensers. Here is a signature for an "abstract" functional (as opposed to imperative) dispenser:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">signature</FONT></B> ABSTRACT_DISPENSER = <B><FONT COLOR="#0000FF">sig</FONT></B>
<B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t
</FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> isEmpty : 'a t -> bool
<B><FONT COLOR="#A020F0">val</FONT></B> push : 'a * 'a t -> 'a t
<B><FONT COLOR="#A020F0">val</FONT></B> pop : 'a t -> ('a * 'a t) option
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
The term "abstract" in the name of the signature refers to the fact that the signature gives no way to instantiate a dispenser. It has nothing to do with the concept of abstract data types.
</p>
<p>
Using SML functors we can write "generic" algorithms that manipulate dispensers of an unknown type. Here are a couple of very simple algorithms:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">functor</FONT></B> DispenserAlgs (D : ABSTRACT_DISPENSER) = <B><FONT COLOR="#0000FF">struct</FONT></B>
<B><FONT COLOR="#0000FF">open</FONT></B> D
<B><FONT COLOR="#A020F0">fun</FONT></B> pushAll (xs, d) = foldl push d xs
<B><FONT COLOR="#A020F0">fun</FONT></B> popAll d = <B><FONT COLOR="#A020F0">let</FONT></B>
<B><FONT COLOR="#A020F0">fun</FONT></B> lp (xs, NONE) = rev xs
| lp (xs, SOME (x, d)) = lp (x::xs, pop d)
<B><FONT COLOR="#A020F0">in</FONT></B>
lp ([], pop d)
<B><FONT COLOR="#A020F0">end</FONT></B>
<B><FONT COLOR="#A020F0">fun</FONT></B> cp (from, to) = pushAll (popAll from, to)
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
As one can easily verify, the above compiles even without any concrete dispenser structure. Functors essentially provide a form a static dispatch that one can use to break compile-time dependencies.
</p>
<p>
We can also give a signature for a concrete dispenser
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">signature</FONT></B> DISPENSER = <B><FONT COLOR="#0000FF">sig</FONT></B>
<B><FONT COLOR="#0000FF">include</FONT></B> ABSTRACT_DISPENSER
<B><FONT COLOR="#A020F0">val</FONT></B> empty : 'a t
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
and write any number of concrete structures implementing the signature. For example, we could implement stacks
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Stack :> DISPENSER = <B><FONT COLOR="#0000FF">struct</FONT></B>
<B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> 'a list
</FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> empty = []
<B><FONT COLOR="#A020F0">val</FONT></B> isEmpty = null
<B><FONT COLOR="#A020F0">val</FONT></B> push = <B><FONT COLOR="#A020F0">op</FONT></B> ::
<B><FONT COLOR="#A020F0">val</FONT></B> pop = List.getItem
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
and queues
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Queue :> DISPENSER = <B><FONT COLOR="#0000FF">struct</FONT></B>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">T</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> 'a list * 'a list
</FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> empty = T ([], [])
<B><FONT COLOR="#A020F0">val</FONT></B> isEmpty = <B><FONT COLOR="#A020F0">fn</FONT></B> T ([], _) => true | _ => false
<B><FONT COLOR="#A020F0">val</FONT></B> normalize = <B><FONT COLOR="#A020F0">fn</FONT></B> ([], ys) => (rev ys, []) | q => q
<B><FONT COLOR="#A020F0">fun</FONT></B> push (y, T (xs, ys)) = T (normalize (xs, y::ys))
<B><FONT COLOR="#A020F0">val</FONT></B> pop = <B><FONT COLOR="#A020F0">fn</FONT></B> (T (x::xs, ys)) => SOME (x, T (normalize (xs, ys))) | _ => NONE
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
One can now write code that uses either the <tt>Stack</tt> or the <tt>Queue</tt> dispenser. One can also instantiate the previously defined functor to create functions for manipulating dispensers of a type:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> S = DispenserAlgs (Stack)
<B><FONT COLOR="#A020F0">val</FONT></B> [<B><FONT COLOR="#5F9EA0">4</FONT></B>,<B><FONT COLOR="#5F9EA0">3</FONT></B>,<B><FONT COLOR="#5F9EA0">2</FONT></B>,<B><FONT COLOR="#5F9EA0">1</FONT></B>] = S.popAll (S.pushAll ([<B><FONT COLOR="#5F9EA0">1</FONT></B>,<B><FONT COLOR="#5F9EA0">2</FONT></B>,<B><FONT COLOR="#5F9EA0">3</FONT></B>,<B><FONT COLOR="#5F9EA0">4</FONT></B>], Stack.empty))
<B><FONT COLOR="#0000FF">structure</FONT></B> Q = DispenserAlgs (Queue)
<B><FONT COLOR="#A020F0">val</FONT></B> [<B><FONT COLOR="#5F9EA0">1</FONT></B>,<B><FONT COLOR="#5F9EA0">2</FONT></B>,<B><FONT COLOR="#5F9EA0">3</FONT></B>,<B><FONT COLOR="#5F9EA0">4</FONT></B>] = Q.popAll (Q.pushAll ([<B><FONT COLOR="#5F9EA0">1</FONT></B>,<B><FONT COLOR="#5F9EA0">2</FONT></B>,<B><FONT COLOR="#5F9EA0">3</FONT></B>,<B><FONT COLOR="#5F9EA0">4</FONT></B>], Queue.empty))
</PRE>
<p>
</p>
<p>
There is no dynamic dispatch involved at the module level in SML. An attempt to do dynamic dispatch
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> q = Q.push (<B><FONT COLOR="#5F9EA0">1</FONT></B>, Stack.empty)
</PRE>
<p>
</p>
<p>
will give a type error.
</p>
<h4 id="head-32ba757ff59bb9cc712ae2effacaf072778872d7">Combining SML Modules and Dynamic Dispatch</h4>
<p>
Let's then combine SML modules and the dynamic dispatch technique introduced in this article. First we define an interface for dispensers:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Dispenser = <B><FONT COLOR="#0000FF">struct</FONT></B>
<B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> 'a t </FONT></B>=<B><FONT COLOR="#228B22">
<FONT COLOR="#B8860B">I</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> {isEmpty : unit -> bool,
push : 'a -> 'a t,
pop : unit -> ('a * 'a t) option}
</FONT></B><B><FONT COLOR="#A020F0">fun</FONT></B> O m (I t) = m t
<B><FONT COLOR="#A020F0">fun</FONT></B> isEmpty t = O#isEmpty t ()
<B><FONT COLOR="#A020F0">fun</FONT></B> push (v, t) = O#push t v
<B><FONT COLOR="#A020F0">fun</FONT></B> pop t = O#pop t ()
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
The <tt>Dispenser</tt> module, which we can think of as an interface for dispensers, implements the <tt>ABSTRACT_DISPENSER</tt> signature using the dynamic dispatch technique, but we leave the signature ascription until later.
</p>
<p>
Then we define a <tt>DispenserClass</tt> functor that makes a "class" out of a given dispenser module:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">functor</FONT></B> DispenserClass (D : DISPENSER) : DISPENSER = <B><FONT COLOR="#0000FF">struct</FONT></B>
<B><FONT COLOR="#0000FF">open</FONT></B> Dispenser
<B><FONT COLOR="#A020F0">fun</FONT></B> make d =
I {isEmpty = <B><FONT COLOR="#A020F0">fn</FONT></B> () => D.isEmpty d,
push = <B><FONT COLOR="#A020F0">fn</FONT></B> x => make (D.push (x, d)),
pop = <B><FONT COLOR="#A020F0">fn</FONT></B> () =>
<B><FONT COLOR="#A020F0">case</FONT></B> D.pop d <B><FONT COLOR="#A020F0">of</FONT></B>
NONE => NONE
| SOME (x, d) => SOME (x, make d)}
<B><FONT COLOR="#A020F0">val</FONT></B> empty =
I {isEmpty = <B><FONT COLOR="#A020F0">fn</FONT></B> () => true,
push = <B><FONT COLOR="#A020F0">fn</FONT></B> x => make (D.push (x, D.empty)),
pop = <B><FONT COLOR="#A020F0">fn</FONT></B> () => NONE}
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
<p>
</p>
<p>
Finally we seal the <tt>Dispenser</tt> module:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Dispenser : ABSTRACT_DISPENSER = Dispenser
</PRE>
<p>
</p>
<p>
This isn't necessary for type safety, because the unsealed <tt>Dispenser</tt> module does not allow one to break encapsulation, but makes sure that only the <tt>DispenserClass</tt> functor can create dispenser classes (because the constructor <tt>Dispenser.I</tt> is no longer accessible).
</p>
<p>
Using the <tt>DispenserClass</tt> functor we can turn any concrete dispenser module into a dispenser class:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> StackClass = DispenserClass (Stack)
<B><FONT COLOR="#0000FF">structure</FONT></B> QueueClass = DispenserClass (Queue)
</PRE>
<p>
</p>
<p>
Each dispenser class implements the same dynamic dispatch interface and the <tt>ABSTRACT_DISPENSER</tt> -signature.
</p>
<p>
Because the dynamic dispatch <tt>Dispenser</tt> module implements the <tt>ABSTRACT_DISPENSER</tt> -signature, we can use it to instantiate the <tt>DispenserAlgs</tt> -functor:
</p>
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> D = DispenserAlgs (Dispenser)
</PRE>
<p>
</p>
<p>
The resulting <tt>D</tt> module, like the <tt>Dispenser</tt> module, works with any dispenser class and uses dynamic dispatch:
</p>
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> [<B><FONT COLOR="#5F9EA0">4</FONT></B>, <B><FONT COLOR="#5F9EA0">3</FONT></B>, <B><FONT COLOR="#5F9EA0">2</FONT></B>, <B><FONT COLOR="#5F9EA0">1</FONT></B>] = D.popAll (D.pushAll ([<B><FONT COLOR="#5F9EA0">1</FONT></B>, <B><FONT COLOR="#5F9EA0">2</FONT></B>, <B><FONT COLOR="#5F9EA0">3</FONT></B>, <B><FONT COLOR="#5F9EA0">4</FONT></B>], StackClass.empty))
<B><FONT COLOR="#A020F0">val</FONT></B> [<B><FONT COLOR="#5F9EA0">1</FONT></B>, <B><FONT COLOR="#5F9EA0">2</FONT></B>, <B><FONT COLOR="#5F9EA0">3</FONT></B>, <B><FONT COLOR="#5F9EA0">4</FONT></B>] = D.popAll (D.pushAll ([<B><FONT COLOR="#5F9EA0">1</FONT></B>, <B><FONT COLOR="#5F9EA0">2</FONT></B>, <B><FONT COLOR="#5F9EA0">3</FONT></B>, <B><FONT COLOR="#5F9EA0">4</FONT></B>], QueueClass.empty))
</PRE>
<p>
</p>
</div>
<p>
<hr>
Last edited on 2008-10-20 11:18:45 by <span title="otaku.housemarque.fi"><a href="VesaKarvonen">VesaKarvonen</a></span>.
</body></html>
|