This file is indexed.

/usr/share/octave/packages/communications-1.1.1/amodce.m is in octave-communications-common 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'amdsb-tc',offset)
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'amdsb-sc')
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'amssb')
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'amssb/time',@var{num},@var{den})
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'qam')
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'fm',@var{dev})
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},@var{Fs},'pm',@var{dev})
## @deftypefnx {Function File} {@var{y} =} amodce (@var{x},[@var{Fs},@var{iphs}],@var{...})
##
## Baseband modulator for analog signals. The input signal is specified by
## @var{x}, its sampling frequency by @var{Fs} and the type of modulation
## by the third argument, @var{typ}. The default values of @var{Fs} is 1 and 
## @var{typ} is 'amdsb-tc'.
##
## If the argument @var{Fs} is a two element vector, the the first element
## represents the sampling rate and the second the initial phase.
##
## The different types of modulations that are available are
##
## @table @asis
## @item 'am'
## @itemx 'amdsb-tc'
## Double-sideband with carrier
## @item 'amdsb-sc'
## Double-sideband with suppressed carrier
## @item 'amssb'
## Single-sideband with frequency domain Hilbert filtering
## @item 'amssb/time'
## Single-sideband with time domain filtering. Hilbert filter is used by 
## default, but the filter can be specified
## @item 'qam'
## Quadrature amplitude modulation
## @item 'fm'
## Frequency modulation
## @item 'pm'
## Phase modulation
## @end table
##
## Additional arguments are available for the modulations 'amdsb-tc', 'fm, 
## 'pm' and 'amssb/time'. These arguments are
##
## @table @code
## @item offset
## The offset in the input signal for the transmitted carrier.
## @item dev
## The deviation of the phase and frequency modulation
## @item num
## @itemx den
## The numerator and denominator of the filter transfer function for the
## time domain filtering of the SSB modulation
## @end table
##
## @end deftypefn
## @seealso{ademodce,dmodce}

function y = amodce (x, Fs, typ, varargin)

  if (nargin < 1)
    help("amodce");
  elseif (nargin < 2)
    Fs = 1;
    typ = "am";
  elseif (nargin < 3)
    typ = "am";
  endif

  if (isempty(Fs))
    Fs = 1;
    iphs = 0;
  elseif (isscalar(Fs))
    iphs = 0;
  else
    if ((max(size(Fs)) != 2) || (min(size(Fs)) != 1))
      error ("amodce: sampling frequency must be a scalar or 2-element vector");
    endif
    Fs = Fs(1);
    iphs = Fs(2);
  endif

  ## Pass the optional arguments
  offset = min(x(:));
  dev = 1;
  num = [];
  den = [];
  narg = 1;
  if (!ischar(typ))
    error ("amodce: modulation type must be a string");
  elseif (strcmp(typ,"am") || strcmp(typ,"amdsb-tc"))
    if (length(varargin) > 0)
      offset = varargin{1};
      narg = narg + 1;
    endif
  elseif (strcmp(typ,"fm") || strcmp(typ,"pm"))
    if (length(varargin) > 0)
      dev = varargin{1};
      narg = narg + 1;
    endif
  endif    
  if (length(varargin) == narg)
    error ("amodce: must specify must numerator and denominator of transfer function");
  elseif (length(varargin) == narg+1)
    num = varargin{narg};
    den = varargin{narg+1};
  elseif (length(varargin) != narg - 1)
    error ("amodce: too many arguments");
  endif

  if (strcmp(typ,"am") || strcmp(typ,"amdsb-tc"))
    y = (x + offset) * exp(1i * iphs);
  elseif (strcmp(typ,"amdsb-sc"))
    y = x * exp(1i * iphs);
  elseif (strcmp(typ,"amssb"))
    if (!isreal(x))
      error ("amodce: SSB modulated signal must be real");
    endif
    ## Damn, must treat Hilbert transform row-by-row!!!
    y = zeros(size(x));
    for i=1:size(x,2)
      y(:,i) = hilbert(x(:,i)) * exp(1i * iphs);
    end
  elseif (strcmp(typ,"amssb/time"))
    if (isempty(num) || isempty(dem))
      error ("amodce: have not implemented Hilbert transform in time domain yet");
    endif
    y = zeros(size(x));
    for i=1:size(x,2)
      y(:,i) = filter(num, den, x(:,i));
      y(:,i) = (x(:,i) + 1i*y(:,i)) * exp(1i * iphs);
    end
  elseif (strcmp(typ,"qam"))
    if (isreal(x))
      if (floor(size(x,2)/2) != (size(x,2)/2))
	      error ("amodce: QAM modulation must have an even number of columns for real signals");
      endif
      y = (x(:,1:2:size(x,2)) + 1i * x(:,2:2:size(x,2))); 
    else
      y = x;
    endif
    y = y * exp(1i * iphs);
  elseif (strcmp(typ,"pm"))
    y = exp(1i * (dev*x + iphs));
  elseif (strcmp(typ,"fm"))
    ## To convert to PM signal, need to evaluate 
    ##    p(t) = \int_0^t dev * x(T) dT 
    ## As x(t) is discrete and not a function, the only way to perform the
    ## above integration is with Simpson's rule. Note \Delta T = 2 * pi / Fs.
    pm = pi / Fs * dev * (cumsum([zeros(1,size(x,2));x(1:size(x,1)-1,:)]) ...
			                    + cumsum(x));
    y = exp(1i * (pm + iphs));
  else
    error ("amodce: unknown modulation specified");
  endif

endfunction