This file is indexed.

/usr/share/octave/packages/communications-1.1.1/golombenco.m is in octave-communications-common 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
## Copyright (C) 2006 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} golombenco (@var{sig}, @var{m})
##
## Returns the Golomb coded signal as cell array.
## Also  total length of output code in bits can be obtained.
## This function uses a @var{m} need to be supplied for encoding signal vector
## into a golomb coded vector. A restrictions is that
## a signal set must strictly be non-negative.  Also the parameter @var{m} need to
## be a non-zero number, unless which it makes divide-by-zero errors.
## The Golomb algorithm [1], is used to encode the data into unary coded
## quotient part which is represented as a set of 1's separated from
## the K-part (binary) using a zero. This scheme doesnt need any 
## kind of dictionaries, it is a parameterized prefix codes.
## Implementation is close to O(N^2), but this implementation
## *may be* sluggish, though correct.  Details of the scheme are, to
## encode the remainder(r of number N) using the floor(log2(m)) bits 
## when rem is in range 0:(2^ceil(log2(m)) - N), and encode it as
## r+(2^ceil(log2(m)) - N), using total of 2^ceil(log2(m)) bits
## in other instance it doesnt belong to case 1. Quotient is coded
## simply just using the unary code. Also accroding to [2] Golomb codes
## are optimal for sequences using the bernoulli probability model:
## P(n)=p^n-1.q & p+q=1, and when M=[1/log2(p)], or P=2^(1/M).
##
## Reference: 1. Solomon Golomb, Run length Encodings, 1966 IEEE Trans
## Info' Theory. 2. Khalid Sayood, Data Compression, 3rd Edition
##
## An exmaple of the use of @code{golombenco} is
## @example
## @group
##   golombenco(1:4,2) #  
##   golombenco(1:10,2) # 
## @end group
## @end example
## @end deftypefn
## @seealso{golombdeco}

function [gcode,Ltot]=golombenco(sig,m)
  if ( nargin < 2 || m<=0)
    error('usage: golombenco(sig,m); see help');
  end

  if (min(sig) < 0)
    error("signal has elements that are outside alphabet set ...
	. Accepts only non-negative numbers. Cannot encode.");
  end

  L=length(sig);
  quot=floor(sig./m);
  rem=sig-quot.*m;


  C=ceil(log2(m));
  partition_limit=2**C-m;
  Ltot=0;
  for j=1:L
    if( rem(j) <  partition_limit )
      BITS=C-1;
    else
      rem(j)=rem(j)+partition_limit;
      BITS=C;
    end
    Ltot=Ltot+BITS+1;
    golomb_part=zeros(1,BITS);

    %
    % How can we eliminate this loop?
    % I essentially need to get the binary
    % representation of rem(j) in the golomb_part(i);
    % -maybe when JWE or someone imports dec2binvec.
    % This does MSB -> LSB
    for i=BITS:-1:1
      golomb_part(i)=mod(rem(j),2);
      rem(j)=floor(rem(j)/2);
    end

    %
    %actual golomb code: sandwich the unary coded quotient,
    %and the remainder.
    %
    gcode{j}=[ones(1,quot(j)) 0  golomb_part];
  end
  Ltot=sum(quot)+Ltot;
 
  return
end
%! 
%! assert(golombenco(3:5,5),{[0 1 1 0],[0 1 1 1],[1 0 0 0 ]})
%! assert(golombenco(3:5,3),{[1 0 0] , [1 0 1 0],[1 0 1 1]})
%!