This file is indexed.

/usr/share/octave/packages/communications-1.1.1/huffmandeco.m is in octave-communications-common 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
## Copyright (C) 2006 Muthiah Annamalai <muthiah.annamalai@uta.edu>
## Copyright (C) 2011 Ferran Mesas Garcia <ferran.mesas01@gmail.com>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{sig} =} huffmandeco (@var{hcode}, @var{dict})
## Decode signal encoded by @code{huffmanenco}.
##
## This function uses a dict built from the 
## @code{huffmandict} and uses it to decode a signal list into a huffman 
## list. A restriction is that @var{hcode} is expected to be a binary code
##
## The returned @var{sig} set that strictly belongs in the range @code{[1,N]}
## with @code{N = length(@var{dict})}. Also @var{dict} can only be from the
## @code{huffmandict} routine. Whenever decoding fails, those signal values a
## re indicated by @code{-1}, and we successively try to restart decoding 
## from the next bit that hasn't failed in decoding, ad-infinitum. An example
## of the use of @code{huffmandeco} is:
##
## @example
## @group
## hd    = huffmandict (1:4, [0.5 0.25 0.15 0.10]);
## hcode = huffmanenco (1:4, hd);
## back  = huffmandeco (hcode, hd)
##       @result{} [1 2 3 4]
## @end group
## @end example
## @seealso{huffmandict, huffmanenco}
## @end deftypefn

function symbols = huffmandeco (hcode, dict)

  if (nargin != 2)
    print_usage();
  elseif (!all((hcode == 1) + (hcode == 0)) || !isvector(hcode))
    error ("first argument must be a binary array");
  elseif (!strcmp (class (dict), "cell"))
    error ("second argument must be of the class dict (from `huffmandict')");
  end

  ## Convert the Huffman Dictionary to a Huffman Tree represented by
  ## an array.
  tree = dict2tree(dict);

  ## Traverse the tree and store the symbols.
  symbols = [];
  pointer = 1; # a pointer to a node of the tree.
  for i = 1:length (hcode);
    if (tree(pointer) != -1)
      symbols = [symbols, tree(pointer)];
      pointer = 1;
    endif
    pointer = 2 * pointer + hcode(i);
  endfor

  ## Check if decodification was successful
  if (tree(pointer) == -1)
    warning ("could not decode last symbol.")
  endif
  symbols = [symbols, tree(pointer)];
endfunction

function tree = dict2tree (dict)
  L = length(dict);
  lengths = zeros(1,L);

  ## the depth of the tree is limited by the maximum word length.
  for i = 1:L
    lengths(i) = length (dict{i});
  endfor
  m = max (lengths);

  tree = zeros(1,2^(m+1)-1)-1;

  for i = 1:L
    pointer = 1;
    word    = dict{i};
    for bit = word
      pointer = 2 * pointer + bit;
    endfor
    tree(pointer) = i;
  endfor
endfunction

%!assert(huffmandeco(huffmanenco(1:4, huffmandict(1:4,[0.5 0.25 0.15 0.10])), huffmandict(1:4,[0.5 0.25 0.15 0.10])), [1:4],0)
%!assert(huffmandeco(huffmanenco([1:100 100:-1:1], huffmandict(1:100,ones(1,100)/100)), huffmandict(1:100,ones(1,100)/100)), [1:100 100:-1:1],0)
%!assert(huffmandeco([huffmanenco(1:4, huffmandict(1:4,[0.5 0.25 0.15 0.10])) 0], huffmandict(1:4,[0.5 0.25 0.15 0.10])), [1:4 -1],0)
%!fail('huffmandeco([huffmanenco(1:4, huffmandict(1:4,[0.5 0.25 0.15 0.10])) 0], huffmandict(1:4,[0.5 0.25 0.15 0.10]))','warning')
%!fail('huffmandeco(''this is not a code'',huffmandict(1:4,[0.5 0.25 0.15 0.10]))')
%!fail('huffmandeco([1 0 1 0],''this is not a dictionary'')')