/usr/share/octave/packages/communications-1.1.1/qaskdeco.m is in octave-communications-common 1.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | ## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{msg} =} qaskdeco (@var{c},@var{m})
## @deftypefnx {Function File} {@var{msg} =} qaskdeco (@var{inphase},@var{quadr},@var{m})
## @deftypefnx {Function File} {@var{msg} =} qaskdeco (@var{...},@var{mnmx})
##
## Demaps an analog signal using a square QASK constellation. The input signal
## maybe either a complex variable @var{c}, or as two real variables
## @var{inphase} and @var{quadr} representing the in-phase and quadrature
## components of the signal.
##
## The argument @var{m} must be a positive integer power of 2. By deafult the
## same constellation as created in @dfn{qaskenco} is used by @dfn{qaskdeco}.
## If is possible to change the values of the minimum and maximum of the
## in-phase and quadrature components of the constellation to account for
## linear changes in the signal values in the received signal. The variable
## @var{mnmx} is a 2-by-2 matrix of the following form
##
## @multitable @columnfractions 0.125 0.05 0.25 0.05 0.25 0.05
## @item @tab | @tab min in-phase @tab , @tab max in-phase @tab |
## @item @tab | @tab min quadrature @tab , @tab max quadrature @tab |
## @end multitable
##
## If @code{sqrt(@var{m})} is an integer, then @dfn{qaskenco} uses a Gray
## mapping. Otherwise, an attempt is made to create a nearly square mapping
## with a minimum Hamming distance between adjacent constellation points.
## @end deftypefn
## @seealso{qaskenco}
function a = qaskdeco(varargin)
have_mnmx = 0;
if (nargin == 2)
c = varargin{1};
inphase = real(c);
quadr = imag(c);
M = varargin{2};
elseif (nargin == 3)
if (all(size(varargin{3}) == [2 2]))
c = varargin{1};
inphase = real(c);
quadr = imag(c);
M = varargin{2};
mnmx = varargin{3};
have_mnmx = 1;
else
inphase = varargin{1};
quadr = varargin{2};
M = varargin{3};
endif
elseif (nargin == 4)
inphase = varargin{1};
quadr = varargin{2};
M = varargin{3};
mnmx = varargin{4};
have_mnmx = 1;
else
error ("qaskdeco: incorrect number of arguments");
endif
if (iscomplex(inphase) || iscomplex(quadr))
error ("qaskdeco: error in in-phase and/or quadrature components");
endif
if (!isscalar(M) || (M != ceil(M)) || (M < 2))
error ("qaskdeco: order of modulation must be a positive integer greater than 2");
endif
if (log2(M) != ceil(log2(M)))
error ("qaskdeco: the order must be a power of two");
endif
if (have_mnmx)
if (any(size(mnmx) != [2 2]))
error ("qaskdeco: error in max/min constellation values");
endif
else
if ((M == 2) || (M == 4))
mnmx = [-1, 1; -1, 1];
elseif (M == 8)
mnmx = [-3, 3; -1, 1];
elseif (sqrt(M) == floor(sqrt(M)))
NC = 2^floor(log2(sqrt(M)));
mnmx = [-NC+1, NC-1; -NC+1, NC-1];
else
NC = 2^floor(log2(sqrt(M))) + 2*sqrt(M/32);
mnmx = [-NC+1, NC-1; -NC+1, NC-1];
endif
endif
if (M == 2)
layout = [0, 1]';
elseif (M == 4)
layout = [0, 1; 2, 3];
elseif (M == 8)
layout = [4, 5; 0, 1; 2, 3; 6, 7];
else
NC =2^floor(log2(sqrt(M)));
MM = NC * NC;
Gray = [0 1];
for i=2:ceil(log2(NC))
Gray = [Gray 2^(i-1) + fliplr(Gray)];
end
Gray = fliplr(de2bi(shift(Gray,length(Gray)/2 - 1)));
Gray2 = zeros(MM,log2(MM));
Gray2(:,1:2:log2(MM)) = repmat(Gray,NC,1);
for i=1:NC
Gray2(i:NC:MM,2:2:log2(MM)) = Gray;
end
layout = reshape(bi2de(fliplr(Gray2)),NC,NC);
if (MM != M)
## Not sure this is the best that can be done for these mappings. If
## anyone wants to improve this, go ahead, but do it in qaskenco too.
OFF = sqrt(M/32);
NR = NC + 2*OFF;
layout2 = NaN * ones(NR);
layout2(1+OFF:OFF+NC,1+OFF:OFF+NC) = layout;
layout2(1:OFF,1+OFF:OFF+NC) = MM + layout(OFF:-1:1,:);
layout2(NR-OFF+1:NR,1+OFF:OFF+NC) = MM + layout(NC:-1:NC-OFF+1,:);
layout2(1+2*OFF:NC,1:OFF) = MM + layout(OFF+1:NC-OFF,OFF:-1:1);
layout2(1+2*OFF:NC,NR-OFF+1:NR) = MM + ...
layout(OFF+1:NC-OFF,NC:-1:NC-OFF+1);
layout2(1+OFF:2*OFF,1:OFF) = MM + ...
layout(NC/2:-1:NC/2-OFF+1,NC/2:-1:OFF+1);
layout2(NC+1:OFF+NC,1:OFF) = MM + ...
layout(NC-OFF:-1:NC/2+1,NC/2:-1:OFF+1);
layout2(1+OFF:2*OFF,NR-OFF+1:NR) = MM + ...
layout(NC/2:-1:NC/2-OFF+1,NC-OFF:-1:NC/2+1);
layout2(NC+1:OFF+NC,NR-OFF+1:NR) = MM + ...
layout(NC-OFF:-1:NC/2+1,NC-OFF:-1:NC/2+1);
layout = layout2;
endif
endif
ix = 1 + (inphase - mnmx(1,1))/(mnmx(1,2)-mnmx(1,1))*(size(layout,1)-1);
qx = 1 + (quadr - mnmx(2,1))/(mnmx(2,2)-mnmx(2,1))*(size(layout,2)-1);
try wfi = warning("off", "Octave:fortran-indexing");
catch wfi = 0;
end
unwind_protect
a = layout(size(layout,1)*(max(min(round(qx),size(layout,2)),1)-1) + ...
max(min(round(ix),size(layout,1)),1));
## XXX FIXME XXX Why is this necessary??
if ((M == 2) &&(size(inphase,1) == 1))
a = a';
endif
if (any(isnan(a(:))))
## We have a non-square constellation, with some invalid points.
## Map to nearest valid constellation points...
indx = find(isnan(a(:)));
ix = ix(indx);
qx = qx(indx);
ang = atan2(quadr(indx),inphase(indx));
qx(find(ang > 3*pi/4)) = NR-OFF;
ix(find((ang <= 3*pi/4) & (ang > pi/2))) = OFF+1;
ix(find((ang <= pi/2) & (ang > pi/4))) = NR - OFF;
qx(find((ang <= pi/4) & (ang > 0))) = NR - OFF;
qx(find((ang <= 0) & (ang > -pi/4))) = OFF+1;
ix(find((ang <= -pi/4) & (ang > -pi/2))) = NR - OFF;
ix(find((ang <= -pi/2) & (ang > -3*pi/4))) = OFF+1;
qx(find(ang <= -3*pi/4)) = OFF+1;
a(indx) = layout(size(layout,1)*(max(min(round(qx), ...
size(layout,2)),1)-1) + max(min(round(ix),size(layout,1)),1));
endif
unwind_protect_cleanup
warning (wfi);
end_unwind_protect
endfunction
%!function dec = __fntestqask1__ (msg, m)
%! [inp, qudr] = qaskenco (msg, m);
%! dec = qaskdeco (inp, qudr, m);
%!function __fntestqask2__ (m, dims)
%! msg = floor( rand(dims) * m);
%! assert (__fntestqask1__ (msg, m), msg);
%!test __fntestqask2__ (2, [100,100])
%!test __fntestqask2__ (4, [100,100])
%!test __fntestqask2__ (8, [100,100])
%!test __fntestqask2__ (16, [100,100])
%!test __fntestqask2__ (32, [100,100])
%!test __fntestqask2__ (64, [100,100])
%!test __fntestqask2__ (2, [100,100,3])
%!test __fntestqask2__ (4, [100,100,3])
%!test __fntestqask2__ (8, [100,100,3])
%!test __fntestqask2__ (16, [100,100,3])
%!test __fntestqask2__ (32, [100,100,3])
%!test __fntestqask2__ (64, [100,100,3])
|