/usr/share/octave/packages/communications-1.1.1/reedmullerdec.m is in octave-communications-common 1.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | ## Copyright (C) 2007, 2011 Muthiah Annamalai <muthiah.annamalai@uta.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} reedmullerdec (@var{VV},@var{G},@var{R},@var{M})
##
## Decode the received code word @var{VV} using the RM-generator matrix @var{G},
## of order @var{R}, @var{M}, returning the code-word C. We use the standard
## majority logic vote method due to Irving S. Reed. The received word has to be
## a matrix of column size equal to to code-word size (i.e @math{2^m}). Each row
## is treated as a separate received word.
##
## The second return value is the message @var{M} got from @var{C}.
##
## G is obtained from definition type construction of Reed Muller code,
## of order @var{R}, length @math{2^M}. Use the function reedmullergen,
## for the generator matrix for the (@var{R},@var{M}) order RM code.
##
## Faster code constructions (also easier) exist, but since
## finding permutation order of the basis vectors, is important, we
## stick with the standard definitions. To use decoder
## function reedmullerdec, you need to use this specific
## generator function.
##
## see: Lin & Costello, Ch.4, "Error Control Coding", 2nd Ed, Pearson.
##
## @example
## @group
## G=reedmullergen(2,4);
## M=[rand(1,11)>0.5];
## C=mod(M*G,2);
## [dec_C,dec_M]=reedmullerdec(C,G,2,4)
##
## @end group
## @end example
##
## @end deftypefn
## @seealso{reedmullergen,reedmullerenc}
## FIXME: make possible to use different generators, if permutation
## matrix (i.e polynomial vector elements of rows of G are given
function [C,CMM]=reedmullerdec(VV,G,R,M)
if ( nargin < 4 )
print_usage();
end
%
% we do a R+1 level majority logic decoding.
% at each order of polynomial modifying the code-word.
%
U=0:M-1; %allowed basis vectors in V2^M.
C=-1*ones(size(VV)); %preset the output word.
[Rows,Cols]=size(G);%rows shadows 'rows()'
%
%first get the row index of G & its corresponding permutation
%elements.
%
P{1}=[0];
for idx=1:M
P{idx+1}=idx;
end
idx=idx+1;
Ufull=1:M;
r=2;
while r <= R
TMP=nchoosek(Ufull,r);
for idy=1:nchoosek(M,r)
P{idx+idy}=TMP(idy,:);
end
idx=idx+idy;
r=r+1;
end
%
%enter majority logic decoding loop, R+1 order polynomial,
%but we do it here for n-k times, both are equivalent.
%
NCODES=size(VV);
NCODES=NCODES(1);
v_adjust=[];
for row_v=1:1:NCODES
V=VV(row_v,:);
CM=-1*ones(1,Rows);
%
%Now start at bottom row, and get the index set,
%for each until the 2nd most row.
%
%special case, r=0, parity check, so just sum-up.
if ( R == 0 )
wt=__majority_logic_vote(V);
CMM(row_v,:)=wt;
C(row_v,:)=mod(wt*G,2);
continue;
end
order=R;
Gadj=G;
prev_len=length(P{Rows});
for idx=Rows:-1:1
%
%adjust the 'V' received vector, at change of each order.
%
if ( prev_len ~= length(P{idx}) || idx == 1 ) %force for_ idx=1
v_adjust=mod(CM(idx+1:end)*Gadj(idx+1:end,:),2);
Gadj(idx+1:end,:)=0;
V=mod(V+ v_adjust,2); % + = - in GF(2).
order = order - 1;
if ( order == 0 ) %special handling of the all-1's basis vector.
CM(idx)=__majority_logic_vote(V);
break
end
end
prev_len=length(P{idx});
Si=P{idx};% index identifier
Si=sort(Si,'descend');
%generate index elements
B=__binvec(0:(2.^length(Si)-1));
WTS=2.^[Si-1];
%actual index set elements.
S=sum(B.*repmat(WTS,[2^length(Si),1]),2);
%doing the operation set difference U \ S to get SCi
SCi=U;
Si_diff=Si-1;
rmidx=[];
for idy=1:M
if( any( Si_diff==SCi(idy) ) )
rmidx=[rmidx, idy];
end
end
SCi(rmidx)=[];
SCi=sort(SCi,'descend');
%corner case RM(r=m,m) case
if (length(SCi) > 0 )
%generate the set SC,
B=__binvec(0:(2.^length(SCi)-1));
WTS=2.^[SCi];
%actual index set elements.
SC=sum(B.*repmat(WTS,[2^length(SCi),1]),2);
else
SC=[0]; %default, has to be empty set mathematically;
end
%
%next compute the checksums & form the weights.
%
wts=[]; %clear prev history
for id_el = 1:length(SC)
sc_el=SC(id_el);
elems=sc_el + S;
elems=elems+1; %adjust indexing
wt=mod(sum(V(elems)),2);%add elements of V, rx vector.
wts(id_el)= wt;%this is checksum
end
%
%do the majority logic vote.
%
CM(idx)=__majority_logic_vote(wts);
end
CMM(row_v,:)=CM;
C(row_v,:)=mod(CM*G,2);
end
return;
end
%
% utility functions
%
function bvec=__binvec(dec_vec)
maxlen=ceil(log2(max(dec_vec)+1));
x=[]; bvec=zeros(length(dec_vec),maxlen);
for idx=maxlen:-1:1
tmp=mod(dec_vec,2);
bvec(:,idx)=tmp.';
dec_vec=(dec_vec-tmp)./2;
end
return
end
%
% crude majority logic decoding; force the = case to 0 by default.
%
function wt=__majority_logic_vote(wts)
wt=sum(wts)-sum(1-wts);%count no of 1's - no of 0's.
if ( wt ~= 0 )
wt = (wt > 0);
%else
%wt = rand() > 0.5; %break the tie.
%end
end
end
%
% majority logic decoding, tie-break using random.
%
function wt=__majority_logic_vote_random(wts)
wt=(1+sign( sum(wts)-sum(1-wts) ))/2;
if ( wt == 0.5 )
wt = (rand()>0.5);
end
end
% test cases
%G=[1 1 1 1,1 1 1 1;
% 0 1 0 1,0 1 0 1;
% 0 0 1 1,0 0 1 1;
% 0 0 0 0 1 1 1 1];
%m=[1 0 0 1];
%c=mod(m*G,2);
%c(1)=1-c(1); %corrects errors!
%[dc,dm]=reedmullerdec(c,G,1,3)
%pause
%
%G=reedmullergen(1,4);
%m=[1 0 0 0 1];
%c=mod(m*G,2);
%[dc,dm]=reedmullerdec(c,G,1,4)
%pause
%
%G=reedmullergen(3,4);
%m=[ones(1,15)];
%c=mod(m*G,2);
%[dc,dm]=reedmullerdec(c,G,3,4)
%pause
%
%G=reedmullergen(2,3);
%m=[0 0 0 1 1 1 1]
%c=mod(m*G,2)
%[dc,dm]=reedmullerdec(c,G,2,3)
%pause
%
%G=reedmullergen(3,3);
%c1=mod([ones(1,8)]*G,2);
%c2=mod([ones(1,4),zeros(1,4)]*G,2);
%[dC,dM]=reedmullerdec([c2;c2;c1;c2],G,3,3)
%
% %special case of repetition code.
% G=reedmullergen(0,3);
% G
% c1=1*G;
% c2=0*G; C=[c1; c2]
% [dC,dM]=reedmullerdec(C,G,0,3)
%
|