/usr/share/octave/packages/communications-1.1.1/rsgenpoly.m is in octave-communications-common 1.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | ## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{g} = } rsgenpoly (@var{n},@var{k})
## @deftypefnx {Function File} {@var{g} = } rsgenpoly (@var{n},@var{k},@var{p})
## @deftypefnx {Function File} {@var{g} = } rsgenpoly (@var{n},@var{k},@var{p},@var{b},@var{s})
## @deftypefnx {Function File} {@var{g} = } rsgenpoly (@var{n},@var{k},@var{p},@var{b})
## @deftypefnx {Function File} {[@var{g}, @var{t}] = } rsgenpoly (@var{...})
##
## Creates a generator polynomial for a Reed-Solomon coding with message
## length of @var{k} and codelength of @var{n}. @var{n} must be greater
## than @var{k} and their difference must be even. The generator polynomial
## is returned on @var{g} as a polynomial over the Galois Field GF(2^@var{m})
## where @var{n} is equal to @code{2^@var{m}-1}. If @var{m} is not integer
## the next highest integer value is used and a generator for a shorten
## Reed-Solomon code is returned.
##
## The elements of @var{g} represent the coefficients of the polynomial in
## descending order. If the length of @var{g} is lg, then the generator
## polynomial is given by
## @iftex
## @tex
## $$
## g_0 x^{lg-1} + g_1 x^{lg-2} + \cdots + g_{lg-1} x + g_lg.
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## @var{g}(0) * x^(lg-1) + @var{g}(1) * x^(lg-2) + ... + @var{g}(lg-1) * x + @var{g}(lg).
## @end example
## @end ifinfo
##
## If @var{p} is defined then it is used as the primitive polynomial of the
## the Galois Field GF(2^@var{m}). The default primitive polynomial will
## be used if @var{p} is equal to [].
##
## The variables @var{b} and @var{s} determine the form of the generator
## polynomial in the following manner.
## @iftex
## @tex
## $$
## g = (x - A^{bs}) (x - A^{(b+1)s}) \cdots (x - A ^{(b+2t-1)s}).
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## @var{g} = (@var{x} - A^(@var{b}*@var{s})) * (@var{x} - A^((@var{b}+1)*@var{s})) * ... * (@var{x} - A^((@var{b}+2*@var{t}-1)*@var{s})).
## @end example
## @end ifinfo
##
## where @var{t} is @code{(@var{n}-@var{k})/2}, and A is the primitive element
## of the Galois Field. Therefore @var{b} is the first consecutive root of the
## generator polynomial and @var{s} is the primitive element to generate the
## the polynomial roots.
##
## If requested the variable @var{t}, which gives the error correction
## capability of the the Reed-Solomon code
## @end deftypefn
## @seealso{gf,rsenc,rsdec}
function [g, t] = rsgenpoly(n, k, _prim, _b, _s)
if ((nargin < 2) || (nargin > 5))
error ("usage: [g, t] = rsgenpoly(n, k, p, b, s)");
endif
if (!isscalar(n) || (n < 3) || ((n - floor(n)) != 0))
error ("rsgenpoly: invalid codeword length");
endif
if (!isscalar(k) || (k < 1) || ((k- floor(k)) != 0))
error ("rsgenpoly: invalid message length");
endif
if (((n-k)/2 - floor((n-k)/2)) != 0)
error ("rsgenpoly: difference of codeword and message lengths must be even");
endif
m = ceil(log2(n+1));
## Adjust n and k if n not equal to 2^m-1
dif = 2^m - 1 - n;
n = n + dif;
k = k + dif;
prim = 0;
if (nargin > 2)
if (isempty(_prim))
prim = 0;
else
prim = _prim;
endif
endif
if (!isscalar(prim) || (prim<0) || ((prim - floor(prim)) != 0))
error ("rsgenpoly: primitive polynomial must use integer representation");
endif
if (prim != 0)
if (!isprimitive(prim))
error ("rsgenpoly: polynomial is not primitive");
endif
if ((prim < 2^m) || (prim > 2^(m+1)))
error ("rsgenpoly: invalid order of the primitive polynomial");
endif
endif
b = 1;
if (nargin > 3)
b = _b;
endif
if (!isscalar(b) || (b < 0) || ((b - floor(b)) != 0))
error ("rsgenpoly: invalid value of b");
endif
s = 1;
if (nargin > 4)
s = _s;
endif
if (!isscalar(s) || (s < 0) || ((s - floor(s)) != 0))
error ("rsgenpoly: invalid value of s");
endif
alph = gf(2, m, prim);
t = (n - k) / 2;
g = gf(1, m, prim);
for i= 1:2*t
g = conv(g, gf([1,alph^((b+i-1)*s)], m, prim));
end
endfunction
|