This file is indexed.

/usr/share/pari/doc/refcard.tex is in pari-doc 2.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
% $Id$
% This file is intended to be processed by plain TeX (TeX82).
% Reference Card for PARI-GP.

% Copyright (c) 1997-2008 Karim Belabas.
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License

% Based on an earlier version by Joseph H. Silverman who kindly let me
% use his original file.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The original copyright notice read:
%
%% Copyright (c) 1993,1994 Joseph H. Silverman. May be freely distributed.
%% Created Tuesday, July 27, 1993
%% Thanks to Stephen Gildea for the multicolumn macro package
%% which I modified from his GNU emacs reference card
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\TITLE{Pari/GP reference card}
\def\versionnumber{2.26}% Version of this reference card
\def\PARIversion{2.5.0}% Version of PARI described on this reference card
\def\year{2011}
\def\month{May}

\special{papersize=29.7cm,21cm}

% ignore parimacro.tex's \magnification setting
\let\oldmagnification\magnification
\catcode`@=11
\def\magnification{\count@}%
\catcode`@=12
\input parimacro.tex
\let\magnification\oldmagnification
\ifPDF
  \pdfpagewidth=11.69in
  \pdfpageheight=8.26in
\fi
%**start of header
\newcount\columnsperpage
% The final reference card has six columns, three on each side.
% This file can be used to produce it in any of three ways:
% 1 column per page
%    produces six separate pages, each of which needs to be reduced to 80%.
%    This gives the best resolution.
% 2 columns per page
%    produces three already-reduced pages.
%    You will still need to cut and paste.
% 3 columns per page
%    produces two pages which must be printed sideways to make a
%    ready-to-use 8.5 x 11 inch reference card.
%    For this you need a dvi device driver that can print sideways.
% [For 2 or 3 columns, you'll need 6 and 8 point fonts.]
% Which mode to use is controlled by setting \columnsperpage above.
%
% Specify how many columns per page you want here:
\columnsperpage=3

% You shouldn't need to modify anything below this line.
%
% Author:
%  Karim Belabas
%  Universite Bordeaux 1, 351 avenue de la Liberation, F-33405 Talence
%  email: Karim.Belabas@math.u-bordeaux.fr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (original reference card by Joseph H. Silverman)
% (original reference card macros due to Stephen Gildea)
%
%% Original Thanks:
%%  I would like to thank Jim Delaney, Kevin Buzzard, Dan Lieman,
%%  and Jaap Top for sending me corrections.
%%
% Thanks to Bill Allombert, Henri Cohen, Gerhard Niklasch, and Joe Silverman
% for many comments and corrections.

\def\version{\month\ \year\ v\versionnumber}

\def\shortcopyrightnotice{\vskip .5ex plus 2 fill
  \centerline{\small \copyright\ \year\ Karim Belabas.
  Permissions on back.  v\versionnumber}}

\def\<#1>{$\langle${#1}$\rangle$}
\def\copyrightnotice{\vskip 1ex plus 2 fill
\begingroup\small
\centerline{Based on an earlier version by Joseph H. Silverman}
\centerline{\version. Copyright \copyright\ \year\ K. Belabas}
\centerline{GP copyright by The PARI Group}

Permission is granted to make and distribute copies of this card provided the
copyright and this permission notice are preserved on all copies.

Send comments and corrections to \<Karim.Belabas@math.u-bordeaux.fr>
\endgroup}

% make \bye not \outer so that the \def\bye in the \else clause below
% can be scanned without complaint.
\def\bye{\par\vfill\supereject\end}

\newdimen\intercolumnskip
\newbox\columna
\newbox\columnb

\def\ncolumns{\the\columnsperpage}

\message{[\ncolumns\space
  column\if 1\ncolumns\else s\fi\space per page]}

\def\scaledmag#1{ scaled \magstep #1}

% This multi-way format was designed by Stephen Gildea
% October 1986.
\if 1\ncolumns
  \hsize 4in
  \vsize 10in
  \voffset -.7in
  \font\titlefont=\fontname\tenbf \scaledmag3
  \font\headingfont=\fontname\tenbf \scaledmag2
  \font\smallfont=\fontname\sevenrm
  \font\smallsy=\fontname\sevensy

  \footline{\hss\folio}
  \def\makefootline{\baselineskip10pt\hsize6.5in\line{\the\footline}}
\else
  \hsize 3.2in
%  \vsize 7.95in
  \vsize 7.90in
  \hoffset -.75in
%  \voffset -.745in
  \voffset -.815in
  \font\titlefont=cmbx10 \scaledmag2
  \font\headingfont=cmbx10 \scaledmag1
  \font\smallfont=cmr6
  \font\smallsy=cmsy6
  \font\eightrm=cmr8
  \font\eightbf=cmbx8
  \font\eightit=cmti8
  \font\eighttt=cmtt8
  \font\eightsy=cmsy8
  \font\eightsl=cmsl8
  \font\eighti=cmmi8
  \font\eightex=cmex10 at 8pt
  \textfont0=\eightrm
  \textfont1=\eighti
  \textfont2=\eightsy
  \textfont3=\eightex
  \def\rm{\fam0 \eightrm}
  \def\bf{\eightbf}
  \def\it{\eightit}
  \def\tt{\eighttt}
  \normalbaselineskip=.8\normalbaselineskip
  \normallineskip=.8\normallineskip
  \normallineskiplimit=.8\normallineskiplimit
  \normalbaselines\rm %make definitions take effect

  \if 2\ncolumns
    \let\maxcolumn=b
    \footline{\hss\rm\folio\hss}
    \def\makefootline{\vskip 2in \hsize=6.86in\line{\the\footline}}
  \else \if 3\ncolumns
    \let\maxcolumn=c
    \nopagenumbers
  \else
    \errhelp{You must set \columnsperpage equal to 1, 2, or 3.}
    \errmessage{Illegal number of columns per page}
  \fi\fi

  \intercolumnskip=.46in
  \def\abc{a}
  \output={%
      % This next line is useful when designing the layout.
      %\immediate\write16{Column \folio\abc\space starts with \firstmark}
      \if \maxcolumn\abc \multicolumnformat \global\def\abc{a}
      \else\if a\abc
        \global\setbox\columna\columnbox \global\def\abc{b}
        %% in case we never use \columnb (two-column mode)
        \global\setbox\columnb\hbox to -\intercolumnskip{}
      \else
        \global\setbox\columnb\columnbox \global\def\abc{c}\fi\fi}
  \def\multicolumnformat{\shipout\vbox{\makeheadline
      \hbox{\box\columna\hskip\intercolumnskip
        \box\columnb\hskip\intercolumnskip\columnbox}
      \makefootline}\advancepageno}
  \def\columnbox{\leftline{\pagebody}}

  \def\bye{\par\vfill\supereject
    \if a\abc \else\null\vfill\eject\fi
    \if a\abc \else\null\vfill\eject\fi
    \end}
\fi

% we won't be using math mode much, so redefine some of the characters
% we might want to talk about
%\catcode`\^=12
%\catcode`\_=12
%\catcode`\~=12

\chardef\\=`\\
\chardef\{=`\{
\chardef\}=`\}

\hyphenation{}

\parindent 0pt
\parskip 0pt

\def\small{\smallfont\textfont2=\smallsy\baselineskip=.8\baselineskip}

\outer\def\newcolumn{\vfill\eject}

\outer\def\title#1{{\titlefont\centerline{#1}}}

\outer\def\section#1{\par\filbreak
  \vskip 1.4ex plus .4ex minus .5ex
  {\headingfont #1}\mark{#1}%
  \vskip .7ex plus .3ex minus .5ex
}

\outer\def\subsec#1{\filbreak
  \vskip 0.1ex plus 0.05ex
  {\bf #1}
  \vskip 0.04ex plus 0.05ex
}

\newdimen\keyindent
\def\beginindentedkeys{\keyindent=1em}
\def\endindentedkeys{\keyindent=0em}
\endindentedkeys

\def\kbd#1{{\tt#1}\null} %\null so not an abbrev even if period follows

\newbox\libox
\setbox\libox\hbox{\kbd{M-x }}
\newdimen\liwidth
\liwidth=\wd\libox

\def\li#1#2{\leavevmode\hbox to \hsize{\hbox to .75\hsize
  {\hskip\keyindent\relax#1\hfil}%
  \hskip -\liwidth minus 1fil
  \kbd{#2}\hfil}}

\def\threecol#1#2#3{\hskip\keyindent\relax#1\hfil&\kbd{#2}\quad
  &\kbd{#3}\quad\cr}

\def\mod{\;\hbox{\rm mod}\;}
\def\expr{\hbox{\it expr}}
\def\seq{\hbox{\it seq}}
\def\args{\hbox{\it args}}
\def\file{\hbox{\it file}}
\def\QQ{\hbox{\bf Q}}
\def\ZZ{\hbox{\bf Z}}
\def\RR{\hbox{\bf R}}
\def\FF{\hbox{\bf F}}
\def\CC{\hbox{\bf C}}
\def\deg{\mathop{\rm deg}}
\def\bs{\char'134}
\def\pow{\^{}\hskip0pt}
\def\til{\raise-0.3em\hbox{\~{}}}
\def\typ#1{\kbd{t\_#1}}
%**end of header

\title{PARI-GP Reference Card}
\centerline{(PARI-GP version \PARIversion)}
Note: optional arguments are surrounded by braces $\{\}$.

\section{Starting \& Stopping GP}
\li{to enter GP, just type its name:}{gp}
\li{to exit GP, type}{\\q {\rm or }quit}

\section{Help}
\li{describe function}{?{\it function}}
\li{extended description}{??{\it keyword}}
\li{list of relevant help topics}{???{\it pattern}}

\section{Input/Output \& Defaults}
\li{output previous line, the lines before}
  {\%{\rm, }\%`{\rm, }\%``{\rm, etc.}}
\li{output from line $n$}{\%$n$}
\li{separate multiple statements on line}{;}
\li{extend statement on additional lines}{\\}
\li{extend statements on several lines}{\{$\seq_1$; $\seq_2$;\}}
\li{comment}{/* $\dots$ */}
\li{one-line comment, rest of line ignored}{\\\\ \dots}
\li{set default $d$ to \var{val}} {default$(\{d\},\{\var{val}\},\{\fl\})$}
\li{mimic behavior of GP 1.39} {default(compatible,3)}

\section{Metacommands}
\li{toggle timer on/off}{\#}
\li{print time for last result}{\#\#}
\li{print \%$n$ in raw format}{\\a $n$}
\li{print defaults}{\\d}
\li{set debug level to $n$}{\\g $n$}
\li{set memory debug level to $n$}{\\gm $n$}
\li{enable/disable logfile}{\\l $\{${\it filename}$\}$}
\li{print \%$n$ in pretty matrix format}{\\m}
\li{set output mode (raw=0, default=1)}{\\o $n$}
\li{set $n$ significant digits}{\\p $n$}
\li{set $n$ terms in series}{\\ps $n$}
\li{quit GP}{\\q}
\li{print the list of PARI types}{\\t}
\li{print the list of user-defined functions}{\\u}
\li{read file into GP}{\\r {\it filename}}
\li{write \%$n$ to file}{\\w $n$ {\it filename}}

\section{GP Within Emacs}
\li{to enter GP from within Emacs:}{M-x gp{\rm,} C-u M-x gp}
\li{word completion}{{\rm \<TAB>}}
\li{help menu window}{M-\\c}
\li{describe function}{M-?}
\li{display \TeX'd PARI manual}{M-x gpman}
\li{set prompt string}{M-\\p}
\li{break line at column 100, insert \kbd{\\}}{M-\\\\}
\li{PARI metacommand \kbd{\\}{\it letter}}{M-\\\hbox{\it letter}}

\section{Reserved Variable Names}
\li{$\pi=3.14159\cdots$}{Pi}
\li{Euler's constant ${}=.57721\cdots$}{Euler}
\li{square root of $-1$}{I}
\li{big-oh notation}{O}

% ****************************************
% This goes at the bottom of page 1
\shortcopyrightnotice
\newcolumn

\section{PARI Types \& Input Formats}
\li{\typ{INT}/\typ{REAL}. Integers, Reals}{$\pm n$, $\pm n.ddd$}
\li{\typ{INTMOD}. Integers modulo $m$}{Mod$(n,m)$}
\li{\typ{FRAC}. Rational Numbers}{$n/m$}
\li{\typ{FFELT}. Elt in a Finite Field}{ffgen(T)}
\li{\typ{COMPLEX}. Complex Numbers}{$x +y\,*\;$I}
\li{\typ{PADIC}. $p$-adic Numbers}{$x\;+\;$O$(p$\pow$k)$}
\li{\typ{QUAD}. Quadratic Numbers}{$x + y\,*\;$quadgen$(D)$}
\li{\typ{POLMOD}. Polynomials modulo $g$}{Mod$(f,g)$}
\li{\typ{POL}. Polynomials}{$a*x$\pow$n+\cdots+b$}
\li{\typ{SER}. Power Series}{$f\;+\;$O$(x$\pow$k)$}
\li{\typ{QFI}/\typ{QFR}. Imag/Real bin.\ quad.\ forms}
  {Qfb$(a,b,c,\{d\})$}
\li{\typ{RFRAC}. Rational Functions}{$f/g$}
\li{\typ{VEC}/\typ{COL}. Row/Column Vectors}
  {[$x,y,z$]{\rm,} [$x,y,z$]\til}
\li{\typ{MAT}. Matrices}{[$x,y$;$z,t$;$u,v$]}
\li{\typ{LIST}. Lists}{List$($[$x,y,z$]$)$}
\li{\typ{STR}. Strings}{"aaa"}

\section{Standard Operators}
\li{basic operations}{+{\rm,} - {\rm,} *{\rm,} /{\rm,} \pow}
\li{\kbd{i=i+1}, \kbd{i=i-1}, \kbd{i=i*j}, \dots}
  {i++{\rm,} i--{\rm,} i*=j{\rm,}\dots}
\li{euclidean quotient, remainder}{$x$\bs/$y${\rm,} $x$\bs$y${\rm,}
$x$\%$y${\rm,} divrem$(x,y)$}
\li{shift $x$ left or right $n$ bits}{ $x$<<$n$, $x$>>$n$
  {\rm or} shift$(x,\pm n)$}
\li{comparison operators}{<={\rm, }<{\rm, }>={\rm, }>{\rm, }=={\rm, }!=}
\li{boolean operators (or, and, not)}{||{\rm, } \&\&{\rm ,} !}
\li{sign of $x=-1,0,1$}{sign$(x)$}
\li{maximum/minimum of $x$ and $y$}{max{\rm,} min$(x,y)$}
\li{integer or real factorial of $x$}{$x$!~{\rm or} factorial$(x)$}
\li{derivative of $f$ w.r.t. $x$}{$f$'}
\section{Conversions}
%
\subsec{Change Objects}
\li{to vector, matrix, set, list, string}
  {Col{\rm/}Vec{\rm,}Mat{\rm,}Set{\rm,}List{\rm,}Str}
\li{create PARI object $(x\mod y)$}{Mod$(x,y)$}
\li{make $x$ a polynomial of $v$}{Pol$(x,\{v\})$}
\li{as above, starting with constant term}{Polrev$(x,\{v\})$}
\li{make $x$ a power series of $v$}{Ser$(x,\{v\})$}
\li{PARI type of object $x$}{type$(x)$}
\li{object $x$ with precision $n$}{prec$(x,\{n\})$}
\li{evaluate $f$ replacing vars by their value}{eval$(f)$}
%
\subsec{Select Pieces of an Object}
\li{length of $x$}{\#$x$ {\rm or} length$(x)$}
\li{$n$-th component of $x$}{component$(x,n)$}
\li{$n$-th component of vector/list $x$}{$x$[$n$]}
\li{$(m,n)$-th component of matrix $x$}{$x$[$m,n$]}
\li{row $m$ or column $n$ of matrix $x$}{$x$[$m,$]{\rm,} $x$[$,n$]}
\li{numerator of $x$}{numerator$(x)$}
\li{lowest denominator of $x$}{denominator$(x)$}
%
\subsec{Conjugates and Lifts}
\li{conjugate of a number $x$}{conj$(x)$}
\li{conjugate vector of algebraic number $x$}{conjvec$(x)$}
\li{norm of $x$, product with conjugate}{norm$(x)$}
\li{square of $L^2$ norm of vector $x$}{norml2$(x)$}
\li{lift of $x$ from Mods}{lift{\rm,} centerlift$(x)$}

\section{Random Numbers}
\li{random integer between $0$ and $N-1$}{random$(\{N\})$}
\li{get random seed}{getrand$()$}
\li{set random seed to $s$}{setrand$(s)$}

\begingroup
\outer\def\subsec#1{\filbreak
  \vskip 0.05ex plus 0.05ex
  {\bf #1}
  \vskip 0.05ex plus 0.05ex
}

\section{Lists, Sets \& Sorting}
\li{sort $x$ by $k$th component}{vecsort$(x,\{k\},\{fl=0\})$}
  {\bf Sets} (= row vector of strings with strictly increasing entries)\hfill\break
%
\li{intersection of sets $x$ and $y$}{setintersect$(x,y)$}
\li{set of elements in $x$ not belonging to $y$}{setminus$(x,y)$}
\li{union of sets $x$ and $y$}{setunion$(x,y)$}
\li{look if $y$ belongs to the set $x$}{setsearch$(x,y,\{\fl\})$}
%
\subsec{Lists}
\li{create empty list $L$}{$L$ = List$()$}
\li{append $x$ to list $L$}{listput$(L,x,\{i\})$}
\li{remove $i$-th component from list $L$}{listpop$(L,\{i\})$}
\li{insert $x$ in list $L$ at position $i$}{listinsert$(L,x,i)$}
\li{sort the list $L$ in place}{listsort$(L,\{\fl\})$}

\section{Programming \& User Functions}
\subsec{Control Statements {\rm ($X$: formal parameter in expression \seq)}}
\li{eval.\ \seq\ for $a\le X\le b$}{for$(X\,$=$\;a,b,\seq)$}
\li{eval.\ \seq\ for $X$ dividing $n$}{fordiv$(n,X,\seq)$}
\li{eval.\ \seq\ for primes $a\le X\le b$}{forprime$(X\,$=$\;a,b,\seq)$}
\li{eval.\ \seq\ for $a\le X\le b$ stepping
$s$}{forstep$(X\,$=$\;a,b,s,\seq)$}
\li{multivariable {\tt for}}{forvec$(X\,$=$\;v,\seq)$}
\li{if $a\ne0$, evaluate $\seq_1$, else $\seq_2$}{if$(a,\{\seq_1\},\{\seq_2\})$}
\li{evaluate \seq\ until $a\ne0$}{until$(a,\seq)$}
\li{while $a\ne0$, evaluate \seq}{while$(a,\seq)$}
\li{exit $n$ innermost enclosing loops}{break$(\{n\})$}
\li{start new iteration of $n$th enclosing loop}{next$(\{n\})$}
\li{return $x$ from current subroutine}{return$(\{x\})$}
\li{error recovery (try $\seq_1$)}{trap$(\{err\},\{\seq_2\},\{\seq_1\})$}
%
\subsec{Input/Output}
\li{print args with/without newline}{print$(),$ print1$()$}
\li{formatted printing}{printf$()$}
\li{read a string from keyboard}{input$()$}
\li{output \args\ in \TeX\ format}{printtex$(\args)$}
\li{write \args\ to file}{write{\rm,} write1{\rm,} writetex$(\file,\args)$}
\li{read file into GP}{read($\{\file\}$)}
%
\subsec{Interface with User and System}
\li{allocates a new stack of $s$ bytes}{allocatemem$(\{s\})$}
\li{execute system command $a$}{system$(a)$}
\li{as above, feed result to GP}{extern$(a)$}
\li{install function from library}{install$(f,code,\{\var{gpf\/}\},\{\var{lib}\})$}
\li{alias \var{old}\ to \var{new}}{alias$(\var{new},\var{old})$}
\li{new name of function $f$ in GP 2.0}{whatnow$(f)$}
%
\subsec{User Defined Functions}
\leavevmode
  {\tt name(formal vars) = my(local vars); \var{seq}}\hfill\break
  {\tt struct.member = \var{seq}}\hfill\break
\li{kill value of variable or function $x$}{kill$(x)$}

\section{Iterations, Sums \& Products}
\li{numerical integration}{intnum$(X\,$=$\;a,b,\expr,\{\fl\})$}
\li{sum \expr\ over divisors of $n$}{sumdiv$(n,X,\expr)$}
\li{sum $X=a$ to $X=b$, initialized at $x$}{sum$(X\,$=$\;a,b,\expr,\{x\})$}
\li{sum of series \expr}{suminf$(X\,$=$\;a,\expr)$}
\li{sum of alternating/positive series}{sumalt{\rm,} sumpos}
\li{product $a\le X\le b$, initialized at $x$}{prod$(X\,$=$\;a,b,\expr,\{x\})$}
\li{product over primes $a\le X\le b$}{prodeuler$(X\,$=$\;a,b,\expr)$}
\li{infinite product $a\le X\le\infty$}{prodinf$(X\,$=$\;a,\expr)$}
\li{real root of \expr\ between $a$ and $b$}{solve$(X\,$=$\;a,b,\expr)$}
\endgroup

% This goes at the top of page 4 (=1st column on back of reference card)

\section{Vectors \& Matrices}
%
\li{dimensions of matrix $x$}{matsize$(x)$}
\li{concatenation of $x$ and $y$}{concat$(x,\{y\})$}
\li{extract components of $x$}{vecextract$(x,y,\{z\})$}
\li{transpose of vector or matrix $x$}{mattranspose$(x)$ {\rm or} $x$\til}
\li{adjoint of the matrix $x$}{matadjoint$(x)$}
\li{eigenvectors of matrix $x$}{mateigen$(x)$}
\li{characteristic polynomial of $x$}{charpoly$(x,\{v\},\{\fl\})$}
\li{minimal polynomial of $x$}{minpoly$(x,\{v\})$}
\li{trace of matrix $x$}{trace$(x)$}
%
\subsec{Constructors \& Special Matrices}
\li{row vec.\ of \expr\ eval'ed at $1\le i\le n$}{vector$(n,\{i\},\{\expr\})$}
\li{col.\ vec.\ of \expr\ eval'ed at $1\le i\le n$}{vectorv$(n,\{i\},\{\expr\})$}
\li{matrix $1\le i\le m$, $1\le j\le n$}{matrix$(m,n,\{i\},\{j\},\{\expr\})$}
\li{diagonal matrix with diagonal $x$}{matdiagonal$(x)$}
\li{$n\times n$ identity matrix}{matid$(n)$}
\li{Hessenberg form of square matrix $x$}{mathess$(x)$}
\li{$n\times n$ Hilbert matrix $H_{ij}=(i+j-1)^{-1}$}{mathilbert$(n)$}
\li{$n\times n$ Pascal triangle $P_{ij}={i\choose j}$}{matpascal$(n-1)$}
\li{companion matrix to polynomial $x$}{matcompanion$(x)$}
%
\subsec{Gaussian elimination}
\li{determinant of matrix $x$}{matdet$(x,\{\fl\})$}
\li{kernel of matrix $x$}{matker$(x,\{\fl\})$}
\li{intersection of column spaces of $x$ and $y$}{matintersect$(x,y)$}
\li{solve $M*X = B$ ($M$ invertible)}{matsolve$(M,B)$}
\li{as solve, modulo $D$ (col. vector)}{matsolvemod$(M,D,B)$}
\li{one sol of $M*X = B$}{matinverseimage$(M,B)$}
\li{basis for image of matrix $x$}{matimage$(x)$}
\li{supplement columns of $x$ to get basis}{matsupplement$(x)$}
\li{rows, cols to extract invertible matrix}{matindexrank$(x)$}
\li{rank of the matrix $x$}{matrank$(x)$}

\section{Lattices \& Quadratic Forms}
\li{upper triangular Hermite Normal Form}{mathnf$(x)$}
\li{HNF of $x$ where $d$ is a multiple of det$(x)$}{mathnfmod$(x,d)$}
\li{elementary divisors of $x$}{matsnf$(x)$}
\li{LLL-algorithm applied to columns of $x$}{qflll$(x,\{\fl\})$}
\li{like \kbd{qflll}, $x$ is Gram matrix of lattice}
  {qflllgram$(x,\{\fl\})$}
\li{LLL-reduced basis for kernel of $x$}{matkerint$(x)$}
\li{$\ZZ$-lattice $\longleftrightarrow$ $\QQ$-vector space}{matrixqz$(x,p)$}
%
\li{signature of quad form $^ty*x*y$}{qfsign$(x)$}
\li{decomp into squares of $^ty*x*y$}{qfgaussred$(x)$}
\li{find up to $m$ sols of $^ty*x*y\le b$}{qfminim$(x,b,m)$}
\li{$v$, $v[i]:=$number of sols of $^ty*x*y = i$}{qfrep$(x,B,\{\fl\})$}
%\li{perfection rank of $x$}{qfperfection$(x)$}
\li{eigenvals/eigenvecs for real symmetric $x$}{qfjacobi$(x)$}

\section{Formal \& p-adic Series}
\li{truncate power series or $p$-adic number}{truncate$(x)$}
\li{valuation of $x$ at $p$}{valuation$(x,p)$}
\subsec{Dirichlet and Power Series}
\li{Taylor expansion around $0$ of $f$ w.r.t. $x$}{taylor$(f,x)$}
\li{$\sum a_kb_k t^k$ from $\sum a_kt^k$ and $\sum b_kt^k$}{serconvol$(x,y)$}
\li{$f=\sum a_k t^k$ from $\sum (a_k/k!)t^k$}{serlaplace$(f)$}
\li{reverse power series $F$ so $F(f(x))=x$}{serreverse$(f)$}
\li{Dirichlet series multiplication / division}{dirmul{\rm,} dirdiv$(x,y)$}
\li{Dirichlet Euler product ($b$ terms)}{direuler$(p\,$=$\;a,b,\expr)$}
\subsec{$p$-adic Functions}
\li{Teichmuller character of $x$}{teichmuller$(x)$}
\li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}

\newcolumn
\title{PARI-GP Reference Card}
\centerline{(PARI-GP version \PARIversion)}

\section{Polynomials \& Rational Functions}
%
\li{degree of $f$}{poldegree$(f)$}
\li{coefficient of degree $n$ of $f$}{polcoeff$(f,n)$}
\li{round coeffs of $f$ to nearest integer}{round$(f,\{$\&$e\})$}
\li{gcd of coefficients of $f$}{content$(f)$}
\li{replace $x$ by $y$ in $f$}{subst$(f,x,y)$}
\li{discriminant of polynomial $f$}{poldisc$(f)$}
%\li{elementary divisors of Z[a]/f'(a)Z[a]}{poldiscreduced$(f)$}
\li{resultant of $f$ and $g$}{polresultant$(f,g,\{v\},\{\fl\})$}
\li{as above, give $[u,v,d]$, $xu + yv = d$}{bezoutres$(x,y)$}
\li{derivative of $f$ w.r.t. $x$}{deriv$(f,x)$}
\li{formal integral of $f$ w.r.t. $x$}{intformal$(f,x)$}
\li{reciprocal poly $x^{\deg f}f(1/x)$}{polrecip$(f)$}
\li{interpol.~pol.~eval.~at $a$}{polinterpolate$(X,\{Y\},\{a\},\{$\&$e\})$}
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
%
\subsec{Roots and Factorization}
\li{number of real roots of $f$, $a < x\le b$}{polsturm$(f,\{a\},\{b\})$}
\li{complex roots of $f$}{polroots$(f)$}
\li{symmetric powers of roots of $f$ up to $n$}{polsym$(f,n)$}
\li{roots of $f \mod p$}{polrootsmod$(f,p,\{\fl\})$}
\li{factor $f$}{factor$(f,\{lim\})$}
\li{factorization of $f\mod p$}{factormod$(f,p,\{\fl\})$}
\li{factorization of $f$ over $\FF_{p^a}$}{factorff$(f,p,a)$}
\li{$p$-adic fact. of $f$ to prec. $r$}{factorpadic$(f,p,r,\{\fl\})$}
\li{$p$-adic roots of $f$ to prec. $r$}{polrootspadic$(f,p,r)$}
\li{$p$-adic root of $f$ cong. to $a\mod p$}{padicappr$(f,a)$}
\li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}
%
\subsec{Special Polynomials}
\li{$n$th cyclotomic polynomial in var. $v$}{polcyclo$(n,\{v\})$}
\li{$d$-th degree subfield of $\QQ(\zeta_n)$} {polsubcyclo$(n,d,\{v\})$}
\li{$n$-th Legendre polynomial}{pollegendre$(n,\{v=x\})$}
\li{$n$-th Tchebicheff polynomial}{polchebyshev$(n,\{\fl\},\{v=x\})$}
\li{Zagier's polynomial of index $n$,$m$}{polzagier$(n,m)$}

\section{Transcendental Functions}
\li{real, imaginary part of $x$}{real$(x)$, imag$(x)$}
\li{absolute value, argument of $x$}{abs$(x)$, arg$(x)$}
\li{square/nth root of $x$}{sqrt$(x)$, sqrtn$(x,n,\{$\&$z\})$}
\li{trig functions}{sin, cos, tan, cotan}
\li{inverse trig functions}{asin, acos, atan}
\li{hyperbolic functions}{sinh, cosh, tanh}
\li{inverse hyperbolic functions}{asinh, acosh, atanh}
\li{exponential of $x$}{exp$(x)$}
\li{natural log of $x$}{ln$(x)$ {\rm or} log$(x)$}
%
\li{gamma function $\Gamma(x)=\int_0^\infty e^{-t}t^{x-1}dt$}{gamma$(x)$}
%\li{half-integer gamma function $\Gamma(n+1/2)$}{gammah$(n)$}
\li{logarithm of gamma function}{lngamma$(x)$}
\li{$\psi(x)=\Gamma'(x)/\Gamma(x)$}{psi$(x)$}
\li{incomplete gamma function ($y=\Gamma(s)$)}{incgam$(s,x,\{y\})$}
\li{exponential integral $\int_x^\infty e^{-t}/t\,dt$}{eint1$(x)$}
\li{error function $2/\sqrt\pi\int_x^\infty e^{-t^2}dt$}{erfc$(x)$}
\li{dilogarithm of $x$}{dilog$(x)$}
\li{$m$th polylogarithm of $x$}{polylog$(m,x,\{\fl\})$}
\li{$U$-confluent hypergeometric function}{hyperu$(a,b,u)$}
\li{$J$-Bessel function, $J_{n+1/2}(x)$}{besselj$(n,x)$, besseljh$(n,x)$}
\li{$K$-Bessel function of index \var{nu}}{besselk$(\var{nu},x)$}

\section{Elementary Arithmetic Functions}
\li{vector of binary digits of $|x|$}{binary$(x)$}
\li{give bit number $n$ of integer $x$}{bittest$(x,n)$}
\li{ceiling of $x$}{ceil$(x)$}
\li{floor of $x$}{floor$(x)$}
\li{fractional part of $x$}{frac$(x)$}
\li{round $x$ to nearest integer}{round$(x,\{$\&$e\})$}
\li{truncate $x$}{truncate$(x,\{$\&$e\})$}
\li{gcd/LCM of $x$ and $y$}{gcd$(x,y)$, lcm$(x,y)$}
\li{gcd of entries of a vector/matrix}{content$(x)$}
\par
\subsec{Primes and Factorization}
\li{add primes in $v$ to the prime table}{addprimes$(v)$}
\li{the $n$th prime}{prime$(n)$}
\li{vector of first $n$ primes}{primes$(n)$}
\li{smallest prime $\ge x$}{nextprime$(x)$}
\li{largest prime $\le x$}{precprime$(x)$}
\li{factorization of $x$}{factor$(x,\{lim\})$}
\li{reconstruct $x$ from its factorization}{factorback$(f,\{e\})$}
\par
\subsec{Divisors}
\li{number of distinct prime divisors}{omega$(x)$}
\li{number of prime divisors  with mult}{bigomega$(x)$}
\li{number of divisors of $x$}{numdiv$(x)$}
\li{row vector of divisors of $x$}{divisors$(x)$}
\li{sum of ($k$-th powers of) divisors of $x$}{sigma$(x,\{k\})$}
\par
\subsec{Special Functions and Numbers}
\li{binomial coefficient $x\choose y$}{binomial$(x,y)$}
\li{Bernoulli number $B_n$ as real}{bernreal$(n)$}
\li{Bernoulli vector $B_0,B_2,\ldots,B_{2n}$}{bernvec$(n)$}
\li{$n$th Fibonacci number}{fibonacci$(n)$}
\li{number of partitions of $n$}{numbpart$(n)$}
\li{Euler $\phi$-function}{eulerphi$(x)$}
\li{M\"obius $\mu$-function}{moebius$(x)$}
\li{Hilbert symbol of $x$ and $y$ (at $p$)}{hilbert$(x,y,\{p\})$}
\li{Kronecker-Legendre symbol $({x\over y})$}{kronecker$(x,y)$}
\par
\subsec{Miscellaneous}
\li{integer or real factorial of $x$}{$x!$ {\rm or} fact$(x)$}
\li{integer square root of $x$}{sqrtint$(x)$}
\li{solve $z\equiv x$ and $z\equiv y$}{chinese$(x,y)$}
\li{minimal $u,v$ so $xu+yv=\gcd(x,y)$}{bezout$(x,y)$}
\li{multiplicative order of $x$ (intmod) (<=$o$)}{znorder$(x,\{o\})$}
\li{primitive root mod prime power $q$}{znprimroot$(q)$}
\li{structure of $(\ZZ/n\ZZ)^*$}{znstar$(n)$}
\li{continued fraction of $x$}{contfrac$(x,\{b\},\{lmax\})$}
\li{last convergent of continued fraction $x$}{contfracpnqn$(x)$}
\li{best rational approximation to $x$}{bestappr$(x,k)$}

\section{True-False Tests}
\li{is $x$ the disc. of a quadratic field?}{isfundamental$(x)$}
\li{is $x$ a prime?}{isprime$(x)$}
\li{is $x$ a strong pseudo-prime?}{ispseudoprime$(x)$}
\li{is $x$ square-free?}{issquarefree$(x)$}
\li{is $x$ a square?}{issquare$(x,\{$\&$n\})$}
\li{is \var{pol}\ irreducible?}{polisirreducible$(\var{pol})$}

% This goes at the bottom of the second page (column 6)
\copyrightnotice
%

%%%%%%%%%%% Extra Material (part II)
%
\newcolumn
\title{PARI-GP Reference Card (2)}
\centerline{(PARI-GP version \PARIversion)}

\section{Elliptic Curves}
%
Elliptic curve initially given by $5$-tuple $E=$\kbd{[$a_1,a_2,a_3,a_4,a_6$]}.
Points are \kbd{[x,y]}, the origin is \kbd{[0]}.
\hfill\break
\li{Initialize elliptic struct. $\var{ell}$, i.e create}{ellinit$(E,\{\fl\})$}
\leavevmode\strut\hskip1em
$a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,disc,j$. This data can be
recovered by typing \kbd{\var{ell}.a1},$\dots$,\kbd{\var{ell}.j}.
If $\fl$ omitted, also
\hfill\break
\li{$\bullet$ $E$ defined over $\RR$}{}
\beginindentedkeys
\li{$x$-coords. of points of order $2$}{\var{ell}.roots}
\li{real and complex periods}{\var{ell}.omega}
\li{associated quasi-periods}{\var{ell}.eta}
\li{volume of complex lattice}{\var{ell}.area}
\endindentedkeys
\li{$\bullet$ $E$ defined over $\QQ_p$, $|j|_p>1$}{}
\beginindentedkeys
\li{$x$-coord. of unit $2$ torsion point}{\var{ell}.roots}
\li{Tate's $[u^2, u, q]$}{\var{ell}.tate}
\li{Mestre's $w$}{\var{ell}.w}
\endindentedkeys
\li{change curve $E$ using $v=$\kbd{[}$u,r,s,t$\kbd{]}}{ellchangecurve$(ell,v)$}
\li{change point $z$ using $v=$\kbd{[}$u,r,s,t$\kbd{]}}{ellchangepoint$(z,v)$}
\li{add points $z_1+z_2$}{elladd$(ell,z_1,z_2)$}
\li{subtract points $z_1-z_2$}{ellsub$(ell,z_1,z_2)$}
\li{compute $n\cdot z$}{ellpow$(ell,z,n)$}
\li{check if $z$ is on $E$}{ellisoncurve$(ell,z)$}
\li{order of torsion point $z$}{ellorder$(ell,z)$}
\li{$y$-coordinates of point(s) for $x$}{ellordinate$(ell,x)$}
\li{point $[\wp(z),\wp'(z)]$ corresp. to $z$}{ellztopoint$(ell,z)$}
\li{complex $z$ such that $p=[\wp(z),\wp'(z)]$}{ellpointtoz$(ell,p)$}

\subsec{Curves over finite fields, Pairings}
\li{random point on $E$}{random$(ell)$}
\li{structure $\ZZ/d_1\ZZ\times \ZZ/d_2\ZZ$ of $E(\FF_p)$}{ellgroup$(ell,p)$}
\li{Weil pairing of $m$-torsion pts $x,y$}{ellweilpairing$(ell,x,y, m)$}
\li{Tate pairing of $x,y$; $x$ $m$-torsion}{elltatepairing$(ell,x,y, m)$}

\subsec{Curves over $\QQ$ and the $L$-function}
\li{canonical bilinear form taken at $z_1$, $z_2$}{ellbil$(ell,z_1,z_2)$}
\li{canonical height of $z$}{ellheight$(ell,z,\{\fl\})$}
\li{height regulator matrix for pts in $x$}{ellheightmatrix$(ell,x)$}
\li{cond, min mod, Tamagawa num \kbd{[}$N,v,c$\kbd{]}}{ellglobalred$(ell)$}
\li{Kodaira type of $p$-fiber of $E$}{elllocalred$(ell,p)$}
\li{minimal model of $E/\QQ$} {ellminimalmodel$(ell,\{$\&$v\})$}
\li{$p$th coeff $a_p$ of $L$-function, $p$ prime}{ellap$(ell,p)$}
\li{$k$th coeff $a_k$ of $L$-function}{ellak$(ell,k)$}
\li{vector of first $n$ $a_k$'s in $L$-function}{ellan$(ell,n)$}
\li{$L(E,s)$, set $A\approx1$}{elllseries$(ell,s,\{A\})$}
\li{order of vanishing at $1$}{ellanalyticrank$(ell,\{\var{eps}\})$}
\li{$L^{(r)}(E,1)$}{ellL1$(ell,r)$}
\li{root number for $L(E,.)$ at $p$}{ellrootno$(ell,\{p\})$}
\li{torsion subgroup with generators}{elltors$(ell)$}
\li{modular parametrization of $E$}{elltaniyama$(ell)$}

\subsec{Elldata package, Cremona's database:}
\li{db code $\leftrightarrow$ $[\var{conductor}, \var{class}, \var{index}]$}{ellconvertname$(s)$}
\li{generators of Mordell-Weil group}{ellgenerators$(E)$}
\li{look up $E$ in database}{ellidentify$(E)$}
\li{all curves matching criterion}{ellsearch$(N)$}
\li{loop over curves with cond.~from $a$ to $b$}{forell$(E, a,b,\seq)$}

\section{Elliptic \& Modular Functions}
%
\li{arithmetic-geometric mean}{agm$(x,y)$}
\li{elliptic $j$-function $1/q+744+\cdots$}{ellj$(x)$}
\li{Weierstrass $\sigma$ function}{ellsigma$(ell,z,\{\fl\})$}
\li{Weierstrass $\wp$ function}{ellwp$(ell,\{z\},\{\fl\})$}
\li{Weierstrass $\zeta$ function}{ellzeta$(ell,z)$}
\li{modified Dedekind $\eta$ func. $\prod(1-q^n)$}{eta$(x,\{\fl\})$}
\li{Jacobi sine theta function}{theta$(q,z)$}
\li{k-th derivative at z=0 of \kbd{theta}$(q,z)$}{thetanullk$(q,k)$}
\li{Weber's $f$ functions}{weber$(x,\{\fl\})$}
\li{Riemann's zeta $\zeta(s)=\sum n^{-s}$}{zeta$(s)$}
%
\bigskip
\section{Graphic Functions}
\li{crude graph of \expr\ between $a$ and $b$}{plot$(X\,$=$\;a,b,expr)$}
\subsec{High-resolution plot {\rm (immediate plot)}}
\li{plot \expr\ between $a$ and $b$}{ploth$(X\,$=$\;a,b,expr,\{\fl\},\{n\})$}
\li{plot points given by lists $lx$, $ly$}{plothraw$(lx,ly,\{\fl\})$}
\li{terminal dimensions}{plothsizes$()$}
%
\subsec{Rectwindow functions}
\li{init window $w$, with size $x$,$y$}{plotinit$(w,x,y)$}
\li{erase window $w$}{plotkill$(w)$}
\li{copy $w$ to $w_2$ with offset $(dx,dy)$}{plotcopy$(w,w_2,dx,dy)$}
\li{scale coordinates in $w$}{plotscale$(w,x_1,x_2,y_1,y_2)$}
\li{\kbd{ploth} in $w$}{plotrecth$(w,X\,$=$\;a,b,expr,\{\fl\},\{n\})$}
\li{\kbd{plothraw} in $w$}{plotrecthraw$(w,data,\{\fl\})$}
\li{draw window $w_1$ at $(x_1,y_1)$, \dots} {plotdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}
%
\subsec{Low-level Rectwindow Functions}
%\li{}{plotlinetype$(w,)$}
%\li{}{plotpointtype$(w,)$}
%\li{}{plotterm$(w,)$}
\li{set current drawing color in $w$ to $c$}{plotcolor$(w,c)$}
\li{current position of cursor in $w$}{plotcursor$(w)$}
%
\li{write $s$ at cursor's position}{plotstring$(w,s)$}
\li{move cursor to $(x,y)$}{plotmove$(w,x,y)$}
\li{move cursor to $(x+dx,y+dy)$}{plotrmove$(w,dx,dy)$}
\li{draw a box to $(x_2,y_2)$}{plotbox$(w,x_2,y_2)$}
\li{draw a box to $(x+dx,y+dy)$}{plotrbox$(w,dx,dy)$}
\li{draw polygon}{plotlines$(w,lx,ly,\{\fl\})$}
\li{draw points}{plotpoints$(w,lx,ly)$}
\li{draw line to $(x+dx,y+dy)$}{plotrline$(w,dx,dy)$}
\li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
%
\subsec{Postscript Functions}
\li{as {\tt ploth}}{psploth$(X\,$=$\;a,b,expr,\{\fl\},\{n\})$}
\li{as {\tt plothraw}}{psplothraw$(lx,ly,\{\fl\})$}
\li{as {\tt plotdraw}}{psdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}
\shortcopyrightnotice
\newcolumn

\section{Binary Quadratic Forms}
%
\li{create $ax^2+bxy+cy^2$ (distance $d$) }{Qfb$(a,b,c,\{d\})$}
\li{reduce $x$ ($s =\sqrt{D}$, $l=\floor{s}$)}
  {qfbred$(x,\{\fl\},\{D\},\{l\},\{s\})$}
\li{composition of forms}{$x$*$y$ {\rm or }qfbnucomp$(x,y,l)$}
\li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}
\li{composition without reduction}{qfbcompraw$(x,y)$}
\li{$n$-th power without reduction}{qfbpowraw$(x,n)$}
\li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}
\li{class number of disc. $x$}{qfbclassno$(x)$}
\li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}

\section{Quadratic Fields}
%
\li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}
\li{minimal polynomial of $\omega$}{quadpoly$(x)$}
\li{discriminant of $\QQ(\sqrt{D})$}{quaddisc$(x)$}
\li{regulator of real quadratic field}{quadregulator$(x)$}
\li{fundamental unit in real $\QQ(x)$}{quadunit$(x)$}
\li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\{\fl\},\{t\})$}
\li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\{\fl\})$}
\li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\{\fl\})$}

\section{General Number Fields: Initializations}
A number field $K$ is given by a monic irreducible $f\in\ZZ[X]$.\hfill\break
\li{init number field structure \var{nf}}{nfinit$(f,\{\fl\})$}
\subsec{nf members:}
\beginindentedkeys
\li{polynomial defining \var{nf}, $f(\theta)=0$}{\var{nf}.pol}
\li{number of real/complex places}{\var{nf}.r1/r2/sign}
\li{discriminant of \var{nf}}{\var{nf}.disc}
\li{$T_2$ matrix}{\var{nf}.t2}
\li{vector of roots of $f$}{\var{nf}.roots}
\li{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}
\li{different}{\var{nf}.diff}
\li{codifferent}{\var{nf}.codiff}
\li{index}{\var{nf}.index}
\endindentedkeys
\li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}
\li{init relative \var{rnf}\ given by $g=0$ over $K$}{rnfinit$(\var{nf},g)$}
%
\li{init\var{bnf} structure}{bnfinit$(f,\{\fl\})$}
\subsec{bnf members: {\rm same as \var{nf}, plus}}
\beginindentedkeys
\li{underlying \var{nf}}{\var{bnf}.nf}
\li{classgroup}{\var{bnf}.clgp}
\li{regulator}{\var{bnf}.reg}
\li{fundamental units}{\var{bnf}.fu}
\li{torsion units}{\var{bnf}.tu}
\endindentedkeys
\li{compute a \var{bnf}\ from small \var{bnf}}{bnfinit$(\var{sbnf})$}
%
\li{add $S$-class group and units, yield \var{bnf} s}{bnfsunit$(\var{nf},S)$}
\li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\{\fl\})$}
%
\subsec{bnr members: {\rm same as \var{bnf}, plus}}
\beginindentedkeys
\li{underlying \var{bnf}}{\var{bnr}.bnf}
\li{big ideal structure}{\var{bnr}.bid}
\li{modulus}{\var{bnr}.mod}
\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
\endindentedkeys

\section{Basic Number Field Arithmetic (nf)}
Elements are \typ{INT}, \typ{FRAC}, \typ{POL}, \typ{POLMOD}, or \typ{COL} (on
integral basis \kbd{\var{nf}.zk}). Basic operations (prefix \kbd{nfelt}):
$($\kbd{nfelt}$)$\kbd{add}, \kbd{mul}, \kbd{pow}, \kbd{div}, \kbd{diveuc},
\kbd{mod}, \kbd{divrem}, \kbd{val}, \kbd{trace}, \kbd{norm} \hfill\break
%
\li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}
\li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}
\li{reverse polmod $a=A(X)\mod T(X)$}{modreverse$(a)$}

\li{integral basis of field def. by $f=0$}{nfbasis$(f)$}
\li{field discriminant of field $f=0$}{nfdisc$(f)$}
\li{Galois group of field $f=0$, $\deg f\le 11$}{polgalois$(f)$}
\li{smallest poly defining $f=0$}{polredabs$(f,\{\fl\})$}
\li{small polys defining subfields of $f=0$}{polred$(f,\{\fl\},\{p\})$}
\li{poly of degree $\le k$ with root $x\in\CC$}{algdep$(x,k)$}
\li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}
\li{are fields $f=0$ and $g=0$ isomorphic?}{nfisisom$(f,g)$}
\li{is field $f=0$ a subfield of $g=0$?}{nfisincl$(f,g)$}
\li{compositum of $f=0$, $g=0$}{polcompositum$(f,g,\{\fl\})$}
\li{subfields (of degree $d$) of \var{nf}}{nfsubfields$(\var{nf},\{d\})$}
%
\li{roots of unity in \var{nf}}{nfrootsof1$(\var{nf}\,)$}
\li{roots of $g$ belonging to \var{nf}}{nfroots$(\{\var{nf}\},g)$}
\li{factor $g$ in \var{nf}}{nffactor$(\var{nf},g)$}
\li{factor $g$ mod prime $pr$ in \var{nf}}{nffactormod$(\var{nf},g,pr)$}
\li{conjugates of a root $\theta$ of \var{nf}}{nfgaloisconj$(\var{nf},\{\fl\})$}
\li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}
\li{quadratic Hilbert symbol (at $p$)}{nfhilbert$(\var{nf},a,b,\{p\})$}
%
\subsec{Dedekind Zeta Function $\zeta_K$}
\li{$\zeta_K$ as Dirichlet series, $N(I)<b$}{dirzetak$(\var{nf},b)$}
\li{init \var{nfz}\ for field $f=0$}{zetakinit$(f)$}
\li{compute $\zeta_K(s)$}{zetak$(\var{nfz},s,\{\fl\})$}
\li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\{\fl\})$}

\section{Class Groups \& Units (bnf, bnr)}
\leavevmode
$a_1,\{a_2\},\{a_3\}$ usually $bnr,subgp$ or $\var{bnf},module,\{subgp\}$
\hfill\break
%
\li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}
\li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\{\fl\})$}
\li{expo.~of ideal $x$ on ray class gp}{bnrisprincipal$(\var{bnr},x,\{\fl\})$}
\li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}
\li{as above for $S$-units}{bnfissunit$(\var{bnfs},x)$}
\li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}
%
\subsec{Class Field Theory}
\li{ray class number for mod.~$m$}{bnrclassno$(\var{bnf},m)$}
\li{discriminant of class field ext}{bnrdisc$(a_1,\{a_2\},\{a_3\})$}
\li{ray class numbers, $l$ list of mods}{bnrclassnolist$(\var{bnf},l)$}
\li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\{\fl\})$}
\li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}
\li{is modulus the conductor?}{bnrisconductor$(a_1,\{a_2\},\{a_3\})$}
\li{conductor of character $chi$}{bnrconductorofchar$(\var{bnr},chi)$}
\li{conductor of extension}{bnrconductor$(a_1,\{a_2\},\{a_3\},\{\fl\})$}
\li{conductor of extension def.\ by $g$}{rnfconductor$(\var{bnf},g)$}
\li{Artin group of ext.\ def'd by $g$}{rnfnormgroup$(\var{bnr},g)$}
\li{subgroups of \var{bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\{\fl\})$}
\li{rel.\ eq.\ for class field def'd by $sub$}{rnfkummer$(\var{bnr},sub,\{d\})$}
\li{same, using Stark units (real field)}{bnrstark$(\var{bnr},sub,\{\fl\})$}

\newcolumn
\title{PARI-GP Reference Card (2)}
\centerline{(PARI-GP version \PARIversion)}

\section{Ideals}
Ideals are elements, primes, or matrix of generators in HNF.\hfill\break
\li{is $id$ an ideal in \var{nf} ?}{nfisideal$(\var{nf},id)$}
\li{is $x$ principal in \var{bnf} ?}{bnfisprincipal$(\var{bnf},x)$}
\li{principal ideal generated by $x$}{idealprincipal$(\var{nf},x)$}
\li{principal idele generated by $x$}{ideleprincipal$(\var{nf},x)$}
\li{give {\tt [}$a,b${\tt ]}, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}
\li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}
\li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}
\li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}
\li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}
%
\subsec{Ideal Operations}
\li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}
\li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\{\fl\})$}
\li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\{\fl\})$}
\li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\{\fl\})$}
\li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}
\li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\{\fl\})$}
\li{Find $(a,b)\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}
%
\subsec{Primes and Multiplicative Structure}
\li{factor ideal $x$ in \var{nf}}{idealfactor$(\var{nf},x)$}
\li{expand ideal factorization in \var{nf}}{idealfactorback$(nf,f,{e})$}
\li{decomposition of prime $p$ in \var{nf}}{idealprimedec$(\var{nf},p)$}
\li{valuation of $x$ at prime ideal $pr$}{idealval$(\var{nf},x,pr)$}
\li{weak approximation theorem in \var{nf}}{idealchinese$(\var{nf},x,y)$}
\li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\{\fl\})$}
\li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}
\li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\{\fl\})$}
\li{add Archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\{\fl\})$}
\li{init \kbd{prmod} structure}{nfmodprinit$(\var{nf},pr)$}
\li{kernel of matrix $M$ in $(\ZZ_K/pr)^*$}{nfkermodpr$(\var{nf},M,prmod)$}
\li{solve $M x = B$ in $(\ZZ_K/pr)^*$}{nfsolvemodpr$(\var{nf},M,B,prmod)$}

\section{Galois theory over $\QQ$}
\li{initializes a Galois group structure}{galoisinit$(\var{pol},\{den\})$}
\li{action of $p$ in nfgaloisconj form}{galoispermtopol$(G,\{p\})$}
\li{identifies as abstract group}{galoisidentify$(G)$}
\li{exports a group for GAP or MAGMA}{galoisexport$(G,\{\fl\})$}
\li{subgroups of the Galois group $G$}{galoissubgroups$(G)$}
\li{subfields from subgroups of $G$}{galoissubfields$(G,\{\fl\},\{v\})$}
\li{fixed field}{galoisfixedfield$(G,\var{perm},\{\fl\},\{v\})$}
\li{is $G$ abelian?}{galoisisabelian$(G,\{\fl\})$}
\li{abelian number fields}{galoissubcyclo(N,H,\{\fl\},\{v\})}

\section{Relative Number Fields (rnf)}
Extension $L/K$ is defined by $g\in K[x]$. We have $order\subset L$.
\hfill\break
%
\li{absolute equation of $L$}{rnfequation$(\var{nf},g,\{\fl\})$}
\li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}
\li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}
\li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}
\li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}
\li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}
%
\subsec{Lifts and Push-downs}
\li{absolute $\rightarrow$ relative repres.\ for $x$}
  {rnfeltabstorel$(\var{rnf},x)$}
\li{relative $\rightarrow$ absolute repres.\ for $x$}
  {rnfeltreltoabs$(\var{rnf},x)$}
\li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}
\li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}
\leavevmode idem for $x$ ideal:
\kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hbadness
10000\break
%
%
\subsec{Projective $\ZZ_K$-modules, maximal order}
\li{relative {\tt polred}}{rnfpolred$(\var{nf},g)$}
\li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},g)$}
\li{characteristic poly.\ of $a$ mod $g$}{rnfcharpoly$(\var{nf},g,a,\{v\})$}
\li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},g,pr)$}
\li{discriminant of relative extension}{rnfdisc$(\var{nf},g)$}
\li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},g)$}
\li{relative HNF basis of $order$}{rnfhnfbasis$(\var{bnf},order)$}
\li{reduced basis for $order$}{rnflllgram$(\var{nf},g,order)$}
\li{determinant of pseudo-matrix $A$}{rnfdet$(\var{nf},A)$}
\li{Steinitz class of $order$}{rnfsteinitz$(\var{nf},order)$}
\li{is \var{order} a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},\var{order})$}
\li{true basis of \var{order}, if it is free}{rnfbasis$(\var{bnf},\var{order})$}
%
\subsec{Norms}
\li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}
\li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}
\li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}
\li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\{\fl\})$}
\li{initialize $T$ for norm eq.~solver}{rnfisnorminit$(K,pol,\{\fl\})$}
\li{is $a\in K$ a norm from $L$?}{rnfisnorm$(T,a,\{\fl\})$}
\vfill
\copyrightnotice
\bye
% Local variables:
% compile-command: "tex PARIRefCard"
% End: