/usr/share/psychtoolbox-3/PsychDemos/MinExpEntStairDemo.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | close all; clear all
% stair input
probeset = -15:0.5:15; % set of possible probe values
meanset = -10:0.2:10; % sampling of pses, doesn't have to be the same as probe set
slopeset = [.5:.1:5].^2; % set of slopes, quad scale
lapse = 0.05; % lapse/mistake rate
guess = 0.50; % guess rate / minimum correct response rate (for detection expt: 1/num_alternative, 0 for discrimination expt)
% general settings
ntrial = 40;
qpause = false; % pause after every iteration? (press any key to continue)
qplot = false; % plot information about each trial? (this pauses as well, regardless of whether you specified qpause as true)
% model observer parameters
qusemodel = true; % use model observer to get responses? Or, if false, input responses by hand (0/1)
truepse = 0; % inflection point (50% if guess rate is 0)
truedl = 4; % (75%-25% point)/2 if guess rate is 0. In general, take the position of the halfway points between the inflection point and the upper and lower asymptotes, then its the distance between them
% model observer definition. uses a cum normal for psychometric function,
% the formula for which is equivalent to what is used by the staircase
% internally (if it is set up to use a cumulative Gaussian)
if guess==0
resp = @(probe) lapse/2 + (1-lapse) *normcdf(probe,truepse,truedl/sqrt(2)/erfinv(0.5)) > rand;
else
resp = @(probe) guess + (1-lapse-guess)*normcdf(probe,truepse,truedl/sqrt(2)/erfinv(0.5)) > rand;
end
% Create staircase instance. If you want to interleave staircases, or
% otherwise run multiple conditions, create one staircase per condition.
% You can store these in a cell-array and of course use different settings
% for each as needed.
stair = MinExpEntStair;
% init stair
stair('init',probeset,meanset,slopeset,lapse,guess);
% option: use logistic instead of default cumulative normal
% stair('set_psychometric_func','logistic');
% option: use a subset of all data for choosing the next probe, use
% proportion of available data (good idea for robustness - see docs)
stair('toggle_use_resp_subset_prop',10,.9);
% option: instead of choosing a random value for the first probe,
% you can set which value is to be tested first.
stair('set_first_value',3)
for ktrial = 1:ntrial
% trial
[p,entexp,ind] = stair('get_next_probe'); % get next probe to test
fprintf('%d, new sample point: %f\nexpect ent: %f\n', ...
ktrial,p,entexp(ind));
if qusemodel % set whether model creates response or you do by manual input
% get observer response from model observer
r = resp(p);
fprintf('response: %d\n',r);
else
% make the response yourself, provide either 0 or 1 (actually,
% anything below and including 0 or anything above 0)
r = input(sprintf('r(%d): ',ktrial));
qpause = false;
end
stair('process_resp',r); % store response in staircase
% end trial
if ktrial == ntrial || qplot
[m,s,loglik] = stair('get_fit');
[ps,rs] = stair('get_history');
figure(1);
subplot(1,3,1);
imagesc(exp(.5*loglik));
set(gca,'YTick',1:4:length(slopeset));
set(gca,'YTickLabel',slopeset(1:4:end));
set(gca,'XTick',1:5:length(meanset));
set(gca,'XTickLabel',meanset(1:5:end));
title('estimated likelihood function');
xlabel('mean (a)')
ylabel('slope (b)')
subplot(1,3,2);
hold off;
if ~isempty(entexp)
plot(probeset,entexp,'k-o');
hold on;
plot(ps(ktrial)*[1,1],[min(entexp),max(entexp)],'r-');
else
plot(ps(ktrial)*[1,1],[0,1],'r-');
end
title('expected entropy vs probe');
xlabel('possible probe values')
xlim([min(probeset) max(probeset)]);
subplot(1,3,3);
pind = find(rs>0);
nind = setdiff(1:length(ps),pind);
plot(1:length(ps),ps,'k-',pind,ps(pind),'bo',nind,ps(nind),'ro');
ylim([min(probeset) max(probeset)]);
title('probe-resp history');
end
% pause if needed
if (ktrial ~= ntrial) && (qpause || qplot)
pause;
end
end % loop over trials
%%% show final results
% [mu,sigma] = stair('get_fit'); % get fitted parameters of cumulative Gaussian
% DL = sigma*erfinv(.5)*sqrt(2) % convert sigma (std) to DL (75%-25% point)/2
% get DL from staircase directly, NB: the space of the outputted
% loglikelihood is the mean/slope space as defined atop this script, its
% not a PSE/DL space
[PSEfinal,DLfinal,loglikfinal] = stair('get_PSE_DL');
finalent = sum(-exp(loglikfinal(:)).*loglikfinal(:));
fprintf('final estimates:\nPSE: %f\nDL: %f\nent: %f\n',PSEfinal,DLfinal,finalent);
% for actual offline fitting of your data, you would probably want to use a
% dedicated toolbox such as Prins, N & Kingdom, F. A. A. (2009) Palamedes:
% Matlab routines for analyzing psychophysical data.
% http://www.palamedestoolbox.org.
% Also note that while the staircase runs far more rebust when a small
% lapse rate is assumed, it is common to either fit the psychometric
% function without a lapse rate, or otherwise with the lapse rate as a free
% parameter (possibily varying only over subjects, but not over conditions
% within each subject).
figure(2);
imagesc(exp(.5*loglikfinal));
set(gca,'YTick',1:4:length(slopeset));
set(gca,'YTickLabel',slopeset(1:4:end));
set(gca,'XTick',1:5:length(meanset));
set(gca,'XTickLabel',meanset(1:5:end));
xlabel('$\mu$','interpreter','latex')
switch stair('get_psychometric_func')
case 'cumGauss'
title('estimated likelihood function - cumulative Gaussian')
ylabel('$\sigma$','interpreter','latex')
case 'logistic'
title('estimated likelihood function - logistic')
ylabel('$s$','interpreter','latex')
end
|