This file is indexed.

/usr/share/psychtoolbox-3/PsychGamma/FitGamma.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
function [fit_out,x,fitComment] = ...
  FitGamma(values_in,measurements,values_out,fitType)
% [fit_out,x,fitComment] = ...
%   FitGamma(values_in,measurements,values_out,[fitType])
% 
% Fit a gamma function.  This essentially a driver function.
% It has two main purposes.
%
% First it tries several different
% underlying parametric forms for the fit and chooses the best
% for a particular data set.
%
% Second, it does the bookkeeping for fitting each column of
% input measurements.  (Each of the underlying fit functions expects
% only vector input.)
%
% To a large extent, the interface to the underlying fit functions
% (e.g. FitGammaPow, FitGammaSig, ...) is uniform.  However, this routine
% does have to know a little bit about initial value dimension and choice.
% We have tried to localize this information in the initialization routines
% (e.g. InitialXPow, InitialXSig, ...) as much as possible, but some
% caution is advised.
%
% Optional argument fitType allows you to force the return of a particular
% paramtetric form.  Currently:
%   fitType == 1:  Power function
%   fitType == 2:  Extended power function
%   fitType == 3:  Sigmoid
%   fitType == 4:  Weibull
%   fitType == 5:  Modified polynomial
%   fitType == 6:  Linear interpolation
%   fitType == 7:  Cubic spline
%
% All fit types are in a form such that the fit is forced through the
% origin for 0 input.  This is because our convention is that gamma
% correction happens after subtraction of the ambient light.
%
% NOTE: FitGammaPow (and perhaps other subroutines) uses CONSTR, which is part of the 
% Mathworks Optimization Toolbox.
% 
% Also see FitGammaDemo.

% 10/3/93   dhb		Removed polynomial fit from list tried with fitType == 0.
% 					Added Weibull function fit
% 3/15/94   dhb, jms Added linear interpolation.
% 7/18/94   dhb		Added cubic spline interpolation.
% 8/7/00    dhb     Fix bug.  Spline was calling linear interpolation.  Thanks to
%                   Chien-Chung Chen for notifying us of this bug.
% 11/14/06  dhb     Modify how default type is set.  Handle passed empty matrix.
% 3/07/10   dhb     Cosmetic to make m-lint happier, including some "|" -> "||"
% 5/26/10   dhb     Allow values_in to be either a single column or a matrix with same number of columns as values_out.
% 6/5/10    dhb     Fix a lot of MATLAB lint warnings.
%           dhb     Fix error reporting to actually take mean across devices.
%           dhb     Rewrite how mean is taken for evaluation of best fit. I think this was done right.
% 11/07/10  dhb     Print out fit exponents when gamma fit by a simple power function.

% Get sizes
[nDevices] = size(measurements,2);
[nOut] = size(values_out,1);

% If input comes as a single column, then replicate it to
% match number of devices
if (size(values_in,2) == 1)
    values_in = repmat(values_in,1,nDevices);
end

% Set up number of fit types
nFitTypes = 5;
error = zeros(nFitTypes,nDevices);

% Handle force fittting
if (nargin < 4 || isempty(fitType))
  fitType = 0;
end

% Fit with simple power function through origin
if (fitType == 0 || fitType == 1 || fitType == 2)
  disp('Fitting with simple power function');
  fit_out1 = zeros(nOut,nDevices);
  [nParams] = size(InitialXPow,1);
  x1 = zeros(nParams,nDevices);
  for i = 1:nDevices
    x0 = InitialXPow;
    [fit_out1(:,i),x1(:,i),error(1,i)] = ...
      FitGammaPow(values_in(:,i),measurements(:,i),values_out,x0);
    fprintf('Exponent for device %d is %g\n',i,x1(:,i));
  end
  fprintf('Simple power function fit, RMSE: %g\n',mean(error(1,i)));
end

% Fit with extended power function.  Use power function
% fit to drive parameters.  InitialXExtP can take a two
% vector as input.  This defines the parameters of a good fitting
% simple power function.
if (fitType == 0 || fitType == 2)
  disp('Fitting with extended power function');
  fit_out2 = zeros(nOut,nDevices);
  [nParams] = size(InitialXExtP,1);
  x2 = zeros(nParams,nDevices);
  for i = 1:nDevices
    x0 = InitialXExtP(x1(:,i));
    [fit_out2(:,i),x2(:,i),error(2,i)] = ...
      FitGammaExtP(values_in(:,i),measurements(:,i),values_out,x0);
  end
  fprintf('Extended power function fit, RMSE: %g\n',mean(error(2,i)));
end

% Fit with a sigmoidal shape.  This works well for
% the dimmer packs controlling lights.  InitialXSig can take
% a two vector as input.  This defines roughly the input for
% half maximum and the maximum output value.
if (fitType == 0 || fitType == 3)
  disp('Fitting with sigmoidal function');
  fit_out3 = zeros(nOut,nDevices);
  [nParams] = size(InitialXSig,1);
  x3 = zeros(nParams,nDevices);
  for i = 1:nDevices
    maxVals = max(values_in(:,i));
    x0 = InitialXSig(maxVals'/2);
    [fit_out3(:,i),x3(:,i),error(3,i)] = ...
      FitGammaSig(values_in(:,i),measurements(:,i),values_out,x0);
  end
  fprintf('Sigmoidal fit, RMSE: %g\n',mean(error(3,i)));
end

% Fit with Weibull
if (fitType == 0 || fitType == 4)
  disp('Fitting with Weibull function');
  fit_out4 = zeros(nOut,nDevices);
  [nParams] = size(InitialXWeib(values_in(:,1),measurements(:,1)),1);
  x4 = zeros(nParams,nDevices);
  for i = 1:nDevices
    x0 = InitialXWeib(values_in(:,i),measurements(:,i));
    [fit_out4(:,i),x4(:,i),error(4,i)] = ...
      FitGammaWeib(values_in(:,i),measurements(:,i),values_out,x0);
  end
  fprintf('Weibull function fit, RMSE: %g\n',mean(error(4,i)));
end

% Fit with polynomial.  InitalXPoly is used mostly for consistency
% with other calling forms, since FitGammaPoly computes an analytic
% fit to start the search.  But it serves to implicitly defines the
% order of the polynomial.
if (fitType == 0 || fitType == 5)
  disp('Fitting with polynomial');
  fit_out5 = zeros(nOut,nDevices);
  [order5] = size(InitialXPoly,1);
  x5 = zeros(order5,nDevices);
  for i = 1:nDevices
    [fit_out5(:,i),x5(:,i),error(5,i)] = ...
       FitGammaPoly(values_in(:,i),measurements(:,i),values_out);
  end
  fprintf('Polynomial fit, order %g, RMSE: %g\n',order5,mean(error(5,i)));
end

% Linear interpolation.  Variable x is bogus here, but
% we fill it in to keep the accountants upstream happy.
if (fitType == 6)
	disp('Fitting with linear interpolation');
  fit_out6 = zeros(nOut,nDevices);
  for i = 1:nDevices
    [fit_out6(:,i)] = ...
       FitGammaLin(values_in(:,i),measurements(:,i),values_out);
  end
	x6 = [];
end

% Cubic spline.  Variable x is bogus here, but
% we fill it in to keep the accountants upstream happy.
if (fitType == 7)
	disp('Fitting with cubic spline');
  fit_out7 = zeros(nOut,nDevices);
  for i = 1:nDevices
    [fit_out7(:,i)] = ...
       FitGammaSpline(values_in(:,i),measurements(:,i),values_out);
  end
	x7 = [];
end

% If we are not forcing a fit type, find best fit.
% Don't check linear interpolation, as it has zero error always.
% Currently we take the minimum mean error over all devices.
% In principle, could use best fit type for each device.  But
% that would make the interface tricky.
if (fitType == 0)
  meanErr = mean(error,2);
  [minErr,bestFit] = min(meanErr);
  fitType = bestFit;
end

if (fitType == 1)
  fit_out = fit_out1;
  x = x1;
  fitComment = (sprintf('Simple power function fit, RMSE: %g',...
    mean(error(1,:))));
elseif (fitType == 2)
  fit_out = fit_out2;
  x = x2;
  fitComment = (sprintf('Extended power function fit, RMSE: %g',...
    mean(error(2,:))));
elseif (fitType == 3)
  fit_out = fit_out3;
  x = x3;
  fitComment = (sprintf('Sigmoidal fit, RMSE: %g',...
    mean(error(3,:))));
elseif (fitType == 4)
  fit_out = fit_out4;
  x = x4;
  fitComment = (sprintf('Weibull fit, RMSE: %g',...
    mean(error(4,:))));
elseif (fitType == 5)
  fit_out = fit_out5;
  x = x5;
  fitComment = (sprintf('Polynomial fit, RMSE: %g',...
    mean(error(5,:))));
elseif (fitType == 6)
  fit_out = fit_out6;
  x = x6;
  fitComment = (sprintf('Linear interpolation fit'));
elseif (fitType == 7)
  fit_out = fit_out7;
  x = x7;
  fitComment = (sprintf('Cubic spline fit'));
end

% Check that fit is non-decreasing
if (CheckMonotonic(fit_out) == 0)
  disp('Warning, fit is not non-decreasing');
end