This file is indexed.

/usr/share/pyshared/ase/cluster/cluster.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import math
import numpy as np
import cPickle as pickle

from ase import Atoms
from ase.data import chemical_symbols
from ase.cluster.base import ClusterBase


class Cluster(Atoms, ClusterBase):
    symmetry = None
    surfaces = None
    lattice_basis = None
    resiproc_basis = None
    atomic_basis = None

    def copy(self):
        cluster = Atoms.copy(self)
        cluster.symmetry = self.symmetry
        cluster.surfaces = self.surfaces.copy()
        cluster.lattice_basis = self.lattice_basis.copy()
        cluster.atomic_basis = self.atomic_basis.copy()
        cluster.resiproc_basis = self.resiproc_basis.copy()
        return cluster

    def get_surfaces(self):
        """Returns the miller indexs of the stored surfaces of the cluster."""
        if not self.surfaces is None:
            return self.surfaces.copy()
        else:
            return None

    def get_layers(self):
        """Return number of atomic layers in stored surfaces directions."""

        layers = []

        for s in self.surfaces:
            n = self.miller_to_direction(s)
            c = self.get_positions().mean(axis=0)
            r = np.dot(self.get_positions() - c, n).max()
            d = self.get_layer_distance(s, 2)
            l = 2 * np.round(r / d).astype(int)

            ls = np.arange(l - 1, l + 2)
            ds = np.array([self.get_layer_distance(s, i) for i in ls])

            mask = (np.abs(ds - r) < 1e-10)

            layers.append(ls[mask][0])

        return np.array(layers, int)

    def get_diameter(self, method='volume'):
        """Returns an estimate of the cluster diameter based on two different
        methods.

        method = 'volume': Returns the diameter of a sphere with the
                           same volume as the atoms. (Default)
        
        method = 'shape': Returns the averaged diameter calculated from the
                          directions given by the defined surfaces.
        """

        if method == 'shape':
            cen = self.get_positions().mean(axis=0)
            pos = self.get_positions() - cen
            d = 0.0
            for s in self.surfaces:
                n = self.miller_to_direction(s)
                r = np.dot(pos, n)
                d += r.max() - r.min()
            return d / len(self.surfaces)
        elif method == 'volume':
            V_cell = np.abs(np.linalg.det(self.lattice_basis))
            N_cell = len(self.atomic_basis)
            N = len(self)
            return 2.0 * (3.0 * N * V_cell /
                          (4.0 * math.pi * N_cell)) ** (1.0 / 3.0)
        else:
            return 0.0

    #Functions to store the cluster
    def write(self, filename=None):
        if not isinstance(filename, str):
            raise Warning('You must specify a valid filename.')

        if os.path.isfile(filename):
            os.rename(filename, filename + '.bak')

        d = {'symmetry': self.symmetry,
             'surfaces': self.surfaces,
             'lattice_basis': self.lattice_basis,
             'resiproc_basis': self.resiproc_basis,
             'atomic_basis': self.atomic_basis,
             'cell': self.get_cell(),
             'pbc': self.get_pbc()}

        f = open(filename, 'w')
        f.write('Cluster')
        pickle.dump(d, f)
        pickle.dump(self.arrays, f)
        f.close()

    def read(self, filename):
        if not os.path.isfile(filename):
            raise Warning('The file specified do not exist.')

        f = open(filename, 'r')

        try:
            if f.read(len('Cluster')) != 'Cluster':
                raise Warning('This is not a compatible file.')
            d = pickle.load(f)
            self.arrays = pickle.load(f)
        except EOFError:
            raise Warinig('Bad file.')

        f.close()

        self.symmetry = d['symmetry']
        self.surfaces = d['surfaces']
        self.lattice_basis = d['lattice_basis']
        self.resiproc_basis = d['resiproc_basis']
        self.atomic_basis = d['atomic_basis']
        self.set_cell(d['cell'])
        self.set_pbc(d['pbc'])
        self.set_constraint()
        self.adsorbate_info = {}
        self.calc = None