This file is indexed.

/usr/share/pyshared/ase/dft/kpoints.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import division
import warnings

import numpy as np


def monkhorst_pack(size):
    """Construct a uniform sampling of k-space of given size."""
    if np.less_equal(size, 0).any():
        raise ValueError('Illegal size: %s' % list(size))
    kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3))
    return (kpts + 0.5) / size - 0.5


def get_monkhorst_pack_size_and_offset(kpts):
    """Find Monkhorst-Pack size and offset.

    Returns (size, offset), where::

        kpts = monkhorst_pack(size) + offset.
    
    The set of k-points must not have been symmetry reduced."""

    if len(kpts) == 1:
        return np.ones(3, int), np.array(kpts[0], dtype=float)
    
    size = np.zeros(3, int)
    for c in range(3):
        # Determine increment between k-points along current axis
        delta = max(np.diff(np.sort(kpts[:, c])))

        # Determine number of k-points as inverse of distance between kpoints
        if delta > 1e-8:
            size[c] = int(round(1.0 / delta))
        else:
            size[c] = 1

    kpts0 = monkhorst_pack(size)
    offsets = kpts - kpts0

    # All offsets must be identical:
    if (offsets.ptp(axis=0) > 1e-9).any():
        raise ValueError('Not an ASE-style Monkhorst-Pack grid!')

    return size, offsets[0].copy()


def get_monkhorst_shape(kpts):
    warnings.warn('Use get_monkhorst_pack_size_and_offset()[0] instead.')
    return get_monkhorst_pack_size_and_offset(kpts)[0]


def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None):
    """Convert k-points between scaled and cartesian coordinates.

    Given the atomic unit cell, and either the scaled or cartesian k-point
    coordinates, the other is determined.

    The k-point arrays can be either a single point, or a list of points,
    i.e. the dimension k can be empty or multidimensional.
    """
    if ckpts_kv is None:
        icell_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
        return np.dot(skpts_kc, icell_cv)
    elif skpts_kc is None:
        return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi)
    else:
        raise KeyError('Either scaled or cartesian coordinates must be given.')


def get_bandpath(points, cell, npoints=50):
    """Make a list of kpoints defining the path between the given points.

    points: list
        List of special IBZ point pairs, e.g. ``points =
        [W, L, Gamma, X, W, K]``.  These should be given in
        scaled coordinates.
    cell: 3x3 ndarray
        Unit cell of the atoms.
    npoints: int
        Length of the output kpts list.

    Return list of k-points, list of x-coordinates and list of
    x-coordinates of special points."""

    points = np.asarray(points)
    dists = points[1:] - points[:-1]
    lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)]
    length = sum(lengths)
    kpts = []
    x0 = 0
    x = []
    X = [0]
    for P, d, L in zip(points[:-1], dists, lengths):
        n = int(round(L * (npoints - 1 - len(x)) / (length - x0)))
        for t in np.linspace(0, 1, n, endpoint=False):
            kpts.append(P + t * d)
            x.append(x0 + t * L)
        x0 += L
        X.append(x0)
    kpts.append(points[-1])
    x.append(x0)
    return kpts, np.array(x), np.array(X)


# The following is a list of the critical points in the 1. Brillouin zone
# for some typical crystal structures.
# (In units of the reciprocal basis vectors)
# See http://en.wikipedia.org/wiki/Brillouin_zone
ibz_points = {'cubic': {'Gamma': [0,     0,     0    ],
                        'X':     [0,     0 / 2, 1 / 2],
                        'R':     [1 / 2, 1 / 2, 1 / 2],
                        'M':     [0 / 2, 1 / 2, 1 / 2]},

              'fcc':   {'Gamma': [0,     0,     0    ],
                        'X':     [1 / 2, 0,     1 / 2],
                        'W':     [1 / 2, 1 / 4, 3 / 4],
                        'K':     [3 / 8, 3 / 8, 3 / 4],
                        'U':     [5 / 8, 1 / 4, 5 / 8],
                        'L':     [1 / 2, 1 / 2, 1 / 2]},

              'bcc':   {'Gamma': [0,      0,     0    ],
                        'H':     [1 / 2, -1 / 2, 1 / 2],
                        'N':     [0,      0,     1 / 2],
                        'P':     [1 / 4,  1 / 4, 1 / 4]},
              'hexagonal':
                       {'Gamma': [0,      0,       0   ],
                        'M':     [0,      1 / 2,   0   ],
                        'K':     [-1 / 3, 1 / 3,   0   ],
                        'A':     [0,      0,     1 / 2 ],
                        'L':     [0,     1 / 2,  1 / 2 ],
                        'H':     [-1 / 3, 1 / 3, 1 / 2 ]},
              'tetragonal':
                       {'Gamma': [0,      0,       0   ],
                        'X':     [1 / 2,  0,       0   ],
                        'M':     [1 / 2,  1 / 2,   0   ],
                        'Z':     [0,      0,     1 / 2 ],
                        'R':     [1 / 2,  0,     1 / 2 ],
                        'A':     [1 / 2,  1 / 2, 1 / 2 ]},
              'orthorhombic':
                       {'Gamma': [0,      0,       0   ],
                        'R':     [1 / 2,  1 / 2, 1 / 2 ],
                        'S':     [1 / 2,  1 / 2,   0   ],
                        'T':     [0,      1 / 2, 1 / 2 ],
                        'U':     [1 / 2,  0,     1 / 2 ],
                        'X':     [1 / 2,  0,       0   ],
                        'Y':     [0,      1 / 2,   0   ],
                        'Z':     [0,      0,     1 / 2 ]},              
              }

# ChadiCohen k point grids. The k point grids are given in units of the
# reciprocal unit cell. The variables are named after the following
# convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
# sq(3)xsq(3) is named 'cc18_sq3xsq3'.

cc6_1x1 = np.array([1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0,
    0, 1, 0]).reshape((6, 3)) / 3.0

cc12_2x3 = np.array([3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0,
    6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6,
    -8, 0]).reshape((12, 3)) / 18.0

cc18_sq3xsq3 = np.array([2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4,
    0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8,
    0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0,
    -4, 8, 0]).reshape((18, 3)) / 18.0

cc18_1x1 = np.array([2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0,
    10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4,
    0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2,
    0]).reshape((18, 3)) / 18.0

cc54_sq3xsq3 = np.array([4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6,
    -8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6,
    0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0,
    10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8,
    -2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0,
    -8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4,
    0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8,
    6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0,
    -2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0

cc54_1x1 = np.array([2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6,
    10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2,
    6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0,
    -4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0,
    -6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0,
    6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0,
    8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6,
    0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0,
    -2, -8, 0, -4, -10, 0, -6, -10, 0]).reshape((54, 3)) / 18.0

cc162_sq3xsq3 = np.array([-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14,
    0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10,
    11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11,
    10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16,
    8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0,
    5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7,
    0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7,
    5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0,
    -14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4,
    0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0,
    -1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1,
    0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1,
    0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1,
    0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2,
    0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0,
    -10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0,
    8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0,
    1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7,
    -7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7,
    0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8,
    0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10,
    0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11,
    -10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0,
    4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13,
    0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1,
    -14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0,
    8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0

cc162_1x1 = np.array([-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14,
    0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0,
    -10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14,
    -10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10,
    0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4,
    -8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11,
    -7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7,
    0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1,
    -5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11,
    -4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4,
    0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1,
    -2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8,
    -1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1,
    0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5,
    1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0,
    -2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4,
    0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4,
    0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5,
    0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2,
    7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0,
    -5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0,
    16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8,
    10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1,
    11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1,
    13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14,
    0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0,
    11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0