This file is indexed.

/usr/share/pyshared/ase/dft/stm.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from math import exp, sqrt

import numpy as np

from ase.atoms import Atoms


class STM:
    def __init__(self, atoms, symmetries=None):
        if isinstance(atoms, Atoms):
            calc = atoms.get_calculator()
        else:
            calc = atoms
            atoms = calc.get_atoms()
        self.nbands = calc.get_number_of_bands()
        self.weights = calc.get_k_point_weights()
        self.nkpts = len(self.weights)
        self.nspins = calc.get_number_of_spins()
        self.eigs = np.array([[calc.get_eigenvalues(k, s)
                               for k in range(self.nkpts)]
                              for s in range(self.nspins)])
        self.eigs -= calc.get_fermi_level()
        self.calc = calc
        self.cell = atoms.get_cell()
        assert not self.cell[2, :2].any() and not self.cell[:2, 2].any()
        self.ldos = None
        self.symmetries = symmetries or []
                               
    def calculate_ldos(self, width=None):
        if self.ldos is not None and width == self.width:
            return

        if width is None:
            width = 0.1
            
        ldos = None
        for s in range(self.nspins):
            for k in range(self.nkpts):
                for n in range(self.nbands):
                    psi = self.calc.get_pseudo_wave_function(n, k, s)
                    if ldos is None:
                        ldos = np.zeros(psi.shape)
                    f = (exp(-(self.eigs[s, k, n] / width)**2) *
                         self.weights[k])
                    ldos += f * (psi * np.conj(psi)).real

        if 0 in self.symmetries:
            # (x,y) -> (-x,y)
            ldos[1:] += ldos[:0:-1].copy()
            ldos[1:] *= 0.5

        if 1 in self.symmetries:
            # (x,y) -> (x,-y)
            ldos[:, 1:] += ldos[:, :0:-1].copy()
            ldos[:, 1:] *= 0.5
            
        if 2 in self.symmetries:
            # (x,y) -> (y,x)
            ldos += ldos.transpose((1, 0, 2)).copy()
            ldos *= 0.5
            
        self.ldos = ldos
        self.width = width

    #def save_ldos(self, filename='ldos.pckl'):
        

    def get_averaged_current(self, z, width=None):
        self.calculate_ldos(width)
        nz = self.ldos.shape[2]

        # Find grid point:
        n = z / self.cell[2, 2] * nz
        dn = n - np.floor(n)
        n = int(n) % nz
        print n,dn

        # Average and do linear interpolation:
        return ((1 - dn) * self.ldos[:, :, n].mean() +
                dn *       self.ldos[:, :, (n + 1) % nz].mean())
    
    def scan(self, current, z=None, width=None):
        self.calculate_ldos(width)

        L = self.cell[2, 2]
        if z is None:
            z = L / 2

        nz = self.ldos.shape[2]
        n = int(round(z / L * nz)) % nz
        h = L / nz

        ldos = self.ldos.reshape((-1, nz))

        heights = np.empty(ldos.shape[0])
        for i, a in enumerate(ldos):
            heights[i], z, n = find_height(a, current, z, n, nz, h)

        heights.shape = self.ldos.shape[:2]
        return heights
    
    def linescan(self, current, p1, p2, npoints=None, z=None, width=None):
        self.calculate_ldos(width)

        L = self.cell[2, 2]
        if z is None:
            z = L / 2

        nz = self.ldos.shape[2]
        n = int(round(z / L * nz)) % nz
        h = L / nz
        ldos = self.ldos.reshape((-1, nz))

        p1 = np.asarray(p1)
        p2 = np.asarray(p2)
        d = p2 - p1
        s = sqrt(np.dot(d, d))
        
        if npints == None:
            npoints = int(3 * s / h + 2)

        cell = self.cell[:2, :2]
        shape = np.array(self.ldos.shape[:2], float)
        M = cell.I
        heights = np.empty(npoints)
        for i in range(npoints):
            p = p1 + i * d / (npoints - 1)
            q = np.dot(M, p) * shape
            qi = q.astype(int)
            n0, n1 = qi
            f = q - qi
            g = 1 - f
            a = (g[0] * g[0] * ldos[n0,     n1    ] +
                 f[0] * g[0] * ldos[n0 + 1, n1    ] +
                 g[0] * f[0] * ldos[n0,     n1 + 1] +
                 f[0] * f[0] * ldos[n0 + 1, n1 + 1])
            heights[i], z, n = find_height(a, current, z, n, nz, h)
        return np.linspace(0, s, npoints), heights

    def cube(self, filename, atoms=None):
        pass


def find_height(array, current, z, n, nz, h):
    c1 = array[n]
    sign = cmp(c1, current)
    m = 0
    while m < nz:
        n = (n + sign) % nz
        z += sign * h
        c2 = array[n]
        if cmp(c2, current) != sign:
            break
        c1 = c2
        m += 1

    if m == nz:
        print z, n, nz, h, current, array
        raise RuntimeError('Tip crash!')

    return z - sign * h * (current - c2) / (c1 - c2), z, n