/usr/share/pyshared/ase/gui/nanoparticle.py is in python-ase 3.6.0.2515-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | # encoding: utf-8
"""nanoparticle.py - Window for setting up crystalline nanoparticles.
"""
import gtk
from gettext import gettext as _
from copy import copy
from ase.gui.widgets import pack, cancel_apply_ok, oops, help
from ase.gui.setupwindow import SetupWindow
from ase.gui.pybutton import PyButton
import ase
import numpy as np
# Delayed imports:
# ase.cluster.data
from ase.cluster.cubic import FaceCenteredCubic, BodyCenteredCubic, SimpleCubic
from ase.cluster.hexagonal import HexagonalClosedPacked, Graphite
from ase.cluster import wulff_construction
introtext = _("""\
Create a nanoparticle either by specifying the number of layers, or using the
Wulff construction. Please press the [Help] button for instructions on how to
specify the directions.
WARNING: The Wulff construction currently only works with cubic crystals!
""")
helptext = _("""
The nanoparticle module sets up a nano-particle or a cluster with a given
crystal structure.
1) Select the element, the crystal structure and the lattice constant(s).
The [Get structure] button will find the data for a given element.
2) Choose if you want to specify the number of layers in each direction, or if
you want to use the Wulff construction. In the latter case, you must specify
surface energies in each direction, and the size of the cluster.
How to specify the directions:
------------------------------
First time a direction appears, it is interpreted as the entire family of
directions, i.e. (0,0,1) also covers (1,0,0), (-1,0,0) etc. If one of these
directions is specified again, the second specification overrules that specific
direction. For this reason, the order matters and you can rearrange the
directions with the [Up] and [Down] keys. You can also add a new direction,
remember to press [Add] or it will not be included.
Example: (1,0,0) (1,1,1), (0,0,1) would specify the {100} family of directions,
the {111} family and then the (001) direction, overruling the value given for
the whole family of directions.
""")
py_template_layers = """
import ase
%(import)s
surfaces = %(surfaces)s
layers = %(layers)s
lc = %(latconst)s
atoms = %(factory)s('%(element)s', surfaces, layers, latticeconstant=lc)
# OPTIONAL: Cast to ase.Atoms object, discarding extra information:
# atoms = ase.Atoms(atoms)
"""
py_template_wulff = """
import ase
from ase.cluster import wulff_construction
surfaces = %(surfaces)s
esurf = %(energies)s
lc = %(latconst)s
size = %(natoms)s # Number of atoms
atoms = wulff_construction('%(element)s', surfaces, esurf, size, '%(structure)s',
rounding='%(rounding)s', latticeconstant=lc)
# OPTIONAL: Cast to ase.Atoms object, discarding extra information:
# atoms = ase.Atoms(atoms)
"""
class SetupNanoparticle(SetupWindow):
"Window for setting up a nanoparticle."
# Structures: Abbreviation, name, 4-index (boolean), two lattice const (bool), factory
structure_data = (('fcc', _('Face centered cubic (fcc)'), False, False, FaceCenteredCubic),
('bcc', _('Body centered cubic (bcc)'), False, False, BodyCenteredCubic),
('sc', _('Simple cubic (sc)'), False, False, SimpleCubic),
('hcp', _('Hexagonal closed-packed (hcp)'), True, True, HexagonalClosedPacked),
('graphite', _('Graphite'), True, True, Graphite),
)
#NB: HCP is broken!
# A list of import statements for the Python window.
import_names = {'fcc': 'from ase.cluster.cubic import FaceCenteredCubic',
'bcc': 'from ase.cluster.cubic import BodyCenteredCubic',
'sc': 'from ase.cluster.cubic import SimpleCubic',
'hcp': 'from ase.cluster.hexagonal import HexagonalClosedPacked',
'graphite': 'from ase.cluster.hexagonal import Graphite',
}
# Default layer specifications for the different structures.
default_layers = {'fcc': [( (1,0,0), 6),
( (1,1,0), 9),
( (1,1,1), 5)],
'bcc': [( (1,0,0), 6),
( (1,1,0), 9),
( (1,1,1), 5)],
'sc': [( (1,0,0), 6),
( (1,1,0), 9),
( (1,1,1), 5)],
'hcp': [( (0,0,0,1), 5),
( (1,0,-1,0), 5)],
'graphite': [( (0,0,0,1), 5),
( (1,0,-1,0), 5)]
}
def __init__(self, gui):
SetupWindow.__init__(self)
self.set_title(_("Nanoparticle"))
self.atoms = None
self.no_update = True
vbox = gtk.VBox()
# Intoductory text
self.packtext(vbox, introtext)
# Choose the element
label = gtk.Label(_("Element: "))
label.set_alignment(0.0, 0.2)
element = gtk.Entry(max=3)
self.element = element
lattice_button = gtk.Button(_("Get structure"))
lattice_button.connect('clicked', self.set_structure_data)
self.elementinfo = gtk.Label(" ")
pack(vbox, [label, element, self.elementinfo, lattice_button], end=True)
self.element.connect('activate', self.update)
self.legal_element = False
# The structure and lattice constant
label = gtk.Label(_("Structure: "))
self.structure = gtk.combo_box_new_text()
self.list_of_structures = []
self.needs_4index = {}
self.needs_2lat = {}
self.factory = {}
for abbrev, name, n4, c, factory in self.structure_data:
self.structure.append_text(name)
self.list_of_structures.append(abbrev)
self.needs_4index[abbrev] = n4
self.needs_2lat[abbrev] = c
self.factory[abbrev] = factory
self.structure.set_active(0)
self.fourindex = self.needs_4index[self.list_of_structures[0]]
self.structure.connect('changed', self.update_structure)
label2 = gtk.Label(_("Lattice constant: a ="))
self.lattice_const_a = gtk.Adjustment(3.0, 0.0, 1000.0, 0.01)
self.lattice_const_c = gtk.Adjustment(5.0, 0.0, 1000.0, 0.01)
self.lattice_box_a = gtk.SpinButton(self.lattice_const_a, 10.0, 3)
self.lattice_box_c = gtk.SpinButton(self.lattice_const_c, 10.0, 3)
self.lattice_box_a.numeric = True
self.lattice_box_c.numeric = True
self.lattice_label_c = gtk.Label(" c =")
pack(vbox, [label, self.structure])
pack(vbox, [label2, self.lattice_box_a,
self.lattice_label_c, self.lattice_box_c])
self.lattice_label_c.hide()
self.lattice_box_c.hide()
self.lattice_const_a.connect('value-changed', self.update)
self.lattice_const_c.connect('value-changed', self.update)
# Choose specification method
label = gtk.Label(_("Method: "))
self.method = gtk.combo_box_new_text()
for meth in (_("Layer specification"), _("Wulff construction")):
self.method.append_text(meth)
self.method.set_active(0)
self.method.connect('changed', self.update_gui_method)
pack(vbox, [label, self.method])
pack(vbox, gtk.Label(""))
self.old_structure = None
frame = gtk.Frame()
pack(vbox, frame)
framebox = gtk.VBox()
frame.add(framebox)
framebox.show()
self.layerlabel = gtk.Label("Missing text") # Filled in later
pack(framebox, [self.layerlabel])
# This box will contain a single table that is replaced when
# the list of directions is changed.
self.direction_table_box = gtk.VBox()
pack(framebox, self.direction_table_box)
pack(self.direction_table_box,
gtk.Label(_("Dummy placeholder object")))
pack(framebox, gtk.Label(""))
pack(framebox, [gtk.Label(_("Add new direction:"))])
self.newdir_label = []
self.newdir_box = []
self.newdir_index = []
packlist = []
for txt in ('(', ', ', ', ', ', '):
self.newdir_label.append(gtk.Label(txt))
adj = gtk.Adjustment(0, -100, 100, 1)
self.newdir_box.append(gtk.SpinButton(adj, 1, 0))
self.newdir_index.append(adj)
packlist.append(self.newdir_label[-1])
packlist.append(self.newdir_box[-1])
self.newdir_layers = gtk.Adjustment(5, 0, 100, 1)
self.newdir_layers_box = gtk.SpinButton(self.newdir_layers, 1, 0)
self.newdir_esurf = gtk.Adjustment(1.0, 0, 1000.0, 0.1)
self.newdir_esurf_box = gtk.SpinButton(self.newdir_esurf, 10, 3)
addbutton = gtk.Button(_("Add"))
addbutton.connect('clicked', self.row_add)
packlist.extend([gtk.Label("): "),
self.newdir_layers_box,
self.newdir_esurf_box,
gtk.Label(" "),
addbutton])
pack(framebox, packlist)
self.defaultbutton = gtk.Button(_("Set all directions to default "
"values"))
self.defaultbutton.connect('clicked', self.default_direction_table)
self.default_direction_table()
# Extra widgets for the Wulff construction
self.wulffbox = gtk.VBox()
pack(vbox, self.wulffbox)
label = gtk.Label(_("Particle size: "))
self.size_n_radio = gtk.RadioButton(None, _("Number of atoms: "))
self.size_n_radio.set_active(True)
self.size_n_adj = gtk.Adjustment(100, 1, 100000, 1)
self.size_n_spin = gtk.SpinButton(self.size_n_adj, 0, 0)
self.size_dia_radio = gtk.RadioButton(self.size_n_radio,
_("Volume: "))
self.size_dia_adj = gtk.Adjustment(1.0, 0, 100.0, 0.1)
self.size_dia_spin = gtk.SpinButton(self.size_dia_adj, 10.0, 2)
pack(self.wulffbox, [label, self.size_n_radio, self.size_n_spin,
gtk.Label(" "), self.size_dia_radio, self.size_dia_spin,
gtk.Label(_("ų"))])
self.size_n_radio.connect("toggled", self.update_gui_size)
self.size_dia_radio.connect("toggled", self.update_gui_size)
self.size_n_adj.connect("value-changed", self.update_size_n)
self.size_dia_adj.connect("value-changed", self.update_size_dia)
label = gtk.Label(_("Rounding: If exact size is not possible, "
"choose the size"))
pack(self.wulffbox, [label])
self.round_above = gtk.RadioButton(None, _("above "))
self.round_below = gtk.RadioButton(self.round_above, _("below "))
self.round_closest = gtk.RadioButton(self.round_above, _("closest "))
self.round_closest.set_active(True)
butbox = gtk.HButtonBox()
self.smaller_button = gtk.Button(_("Smaller"))
self.larger_button = gtk.Button(_("Larger"))
self.smaller_button.connect('clicked', self.wulff_smaller)
self.larger_button.connect('clicked', self.wulff_larger)
pack(butbox, [self.smaller_button, self.larger_button])
buts = [self.round_above, self.round_below, self.round_closest]
for b in buts:
b.connect("toggled", self.update)
buts.append(butbox)
pack(self.wulffbox, buts, end=True)
# Information
pack(vbox, gtk.Label(""))
infobox = gtk.VBox()
label1 = gtk.Label(_("Number of atoms: "))
self.natoms_label = gtk.Label("-")
label2 = gtk.Label(_(" Approx. diameter: "))
self.dia1_label = gtk.Label("-")
pack(infobox, [label1, self.natoms_label, label2, self.dia1_label])
pack(infobox, gtk.Label(""))
infoframe = gtk.Frame(_("Information about the created cluster:"))
infoframe.add(infobox)
infobox.show()
pack(vbox, infoframe)
# Buttons
self.pybut = PyButton(_("Creating a nanoparticle."))
self.pybut.connect('clicked', self.makeatoms)
helpbut = help(helptext)
buts = cancel_apply_ok(cancel=lambda widget: self.destroy(),
apply=self.apply,
ok=self.ok)
pack(vbox, [self.pybut, helpbut, buts], end=True, bottom=True)
self.auto = gtk.CheckButton(_("Automatic Apply"))
fr = gtk.Frame()
fr.add(self.auto)
fr.show_all()
pack(vbox, [fr], end=True, bottom=True)
# Finalize setup
self.update_structure()
self.update_gui_method()
self.add(vbox)
vbox.show()
self.show()
self.gui = gui
self.no_update = False
def default_direction_table(self, widget=None):
"Set default directions and values for the current crystal structure."
self.direction_table = []
struct = self.get_structure()
for direction, layers in self.default_layers[struct]:
adj1 = gtk.Adjustment(layers, -100, 100, 1)
adj2 = gtk.Adjustment(1.0, -1000.0, 1000.0, 0.1)
adj1.connect("value-changed", self.update)
adj2.connect("value-changed", self.update)
self.direction_table.append([direction, adj1, adj2])
self.update_direction_table()
def update_direction_table(self):
"Update the part of the GUI containing the table of directions."
#Discard old table
oldwidgets = self.direction_table_box.get_children()
assert len(oldwidgets) == 1
oldwidgets[0].hide()
self.direction_table_box.remove(oldwidgets[0])
del oldwidgets # It should now be gone
tbl = gtk.Table(len(self.direction_table)+1, 7)
pack(self.direction_table_box, [tbl])
for i, data in enumerate(self.direction_table):
tbl.attach(gtk.Label("%s: " % (str(data[0]),)),
0, 1, i, i+1)
if self.method.get_active():
# Wulff construction
spin = gtk.SpinButton(data[2], 1.0, 3)
else:
# Layers
spin = gtk.SpinButton(data[1], 1, 0)
tbl.attach(spin, 1, 2, i, i+1)
tbl.attach(gtk.Label(" "), 2, 3, i, i+1)
but = gtk.Button(_("Up"))
but.connect("clicked", self.row_swap_next, i-1)
if i == 0:
but.set_sensitive(False)
tbl.attach(but, 3, 4, i, i+1)
but = gtk.Button(_("Down"))
but.connect("clicked", self.row_swap_next, i)
if i == len(self.direction_table)-1:
but.set_sensitive(False)
tbl.attach(but, 4, 5, i, i+1)
but = gtk.Button(_("Delete"))
but.connect("clicked", self.row_delete, i)
if len(self.direction_table) == 1:
but.set_sensitive(False)
tbl.attach(but, 5, 6, i, i+1)
tbl.show_all()
self.update()
def get_structure(self):
"Returns the crystal structure chosen by the user."
return self.list_of_structures[self.structure.get_active()]
def update_structure(self, widget=None):
"Called when the user changes the structure."
s = self.get_structure()
if s != self.old_structure:
old4 = self.fourindex
self.fourindex = self.needs_4index[s]
if self.fourindex != old4:
# The table of directions is invalid.
self.default_direction_table()
self.old_structure = s
if self.needs_2lat[s]:
self.lattice_label_c.show()
self.lattice_box_c.show()
else:
self.lattice_label_c.hide()
self.lattice_box_c.hide()
if self.fourindex:
self.newdir_label[3].show()
self.newdir_box[3].show()
else:
self.newdir_label[3].hide()
self.newdir_box[3].hide()
self.update()
def update_gui_method(self, widget=None):
"Switch between layer specification and Wulff construction."
self.update_direction_table()
if self.method.get_active():
self.wulffbox.show()
self.layerlabel.set_text(_("Surface energies (as energy/area, "
"NOT per atom):"))
self.newdir_layers_box.hide()
self.newdir_esurf_box.show()
else:
self.wulffbox.hide()
self.layerlabel.set_text(_("Number of layers:"))
self.newdir_layers_box.show()
self.newdir_esurf_box.hide()
self.update()
def wulff_smaller(self, widget=None):
"Make a smaller Wulff construction."
n = len(self.atoms)
self.size_n_radio.set_active(True)
self.size_n_adj.value = n-1
self.round_below.set_active(True)
self.apply()
def wulff_larger(self, widget=None):
"Make a larger Wulff construction."
n = len(self.atoms)
self.size_n_radio.set_active(True)
self.size_n_adj.value = n+1
self.round_above.set_active(True)
self.apply()
def row_add(self, widget=None):
"Add a row to the list of directions."
if self.fourindex:
n = 4
else:
n = 3
idx = tuple( [int(a.value) for a in self.newdir_index[:n]] )
if not np.array(idx).any():
oops(_("At least one index must be non-zero"))
return
if n == 4 and np.array(idx)[:3].sum() != 0:
oops(_("Invalid hexagonal indices",
"The sum of the first three numbers must be zero"))
return
adj1 = gtk.Adjustment(self.newdir_layers.value, -100, 100, 1)
adj2 = gtk.Adjustment(self.newdir_esurf.value, -1000.0, 1000.0, 0.1)
adj1.connect("value-changed", self.update)
adj2.connect("value-changed", self.update)
self.direction_table.append([idx, adj1, adj2])
self.update_direction_table()
def row_delete(self, widget, row):
del self.direction_table[row]
self.update_direction_table()
def row_swap_next(self, widget, row):
dt = self.direction_table
dt[row], dt[row+1] = dt[row+1], dt[row]
self.update_direction_table()
def update_gui_size(self, widget=None):
"Update gui when the cluster size specification changes."
self.size_n_spin.set_sensitive(self.size_n_radio.get_active())
self.size_dia_spin.set_sensitive(self.size_dia_radio.get_active())
def update_size_n(self, widget=None):
if not self.size_n_radio.get_active():
return
at_vol = self.get_atomic_volume()
dia = 2.0 * (3 * self.size_n_adj.value * at_vol / (4 * np.pi))**(1.0/3)
self.size_dia_adj.value = dia
self.update()
def update_size_dia(self, widget=None):
if not self.size_dia_radio.get_active():
return
at_vol = self.get_atomic_volume()
n = round(np.pi / 6 * self.size_dia_adj.value**3 / at_vol)
self.size_n_adj.value = n
self.update()
def update(self, *args):
if self.no_update:
return
self.update_element()
if self.auto.get_active():
self.makeatoms()
if self.atoms is not None:
self.gui.new_atoms(self.atoms)
else:
self.clearatoms()
self.makeinfo()
def set_structure_data(self, *args):
"Called when the user presses [Get structure]."
if not self.update_element():
oops(_("Invalid element."))
return
z = ase.atomic_numbers[self.legal_element]
ref = ase.data.reference_states[z]
if ref is None:
structure = None
else:
structure = ref['symmetry']
if ref is None or not structure in self.list_of_structures:
oops(_("Unsupported or unknown structure",
"Element = %s, structure = %s" % (self.legal_element,
structure)))
return
for i, s in enumerate(self.list_of_structures):
if structure == s:
self.structure.set_active(i)
a = ref['a']
self.lattice_const_a.set_value(a)
self.fourindex = self.needs_4index[structure]
if self.fourindex:
try:
c = ref['c']
except KeyError:
c = ref['c/a'] * a
self.lattice_const_c.set_value(c)
self.lattice_label_c.show()
self.lattice_box_c.show()
else:
self.lattice_label_c.hide()
self.lattice_box_c.hide()
def makeatoms(self, *args):
"Make the atoms according to the current specification."
if not self.update_element():
self.clearatoms()
self.makeinfo()
return False
assert self.legal_element is not None
struct = self.list_of_structures[self.structure.get_active()]
if self.needs_2lat[struct]:
# a and c lattice constants
lc = {'a': self.lattice_const_a.value,
'c': self.lattice_const_c.value}
lc_str = str(lc)
else:
lc = self.lattice_const_a.value
lc_str = "%.5f" % (lc,)
if self.method.get_active() == 0:
# Layer-by-layer specification
surfaces = [x[0] for x in self.direction_table]
layers = [int(x[1].value) for x in self.direction_table]
self.atoms = self.factory[struct](self.legal_element, copy(surfaces),
layers, latticeconstant=lc)
imp = self.import_names[struct]
self.pybut.python = py_template_layers % {'import': imp,
'element': self.legal_element,
'surfaces': str(surfaces),
'layers': str(layers),
'latconst': lc_str,
'factory': imp.split()[-1]
}
else:
# Wulff construction
assert self.method.get_active() == 1
surfaces = [x[0] for x in self.direction_table]
surfaceenergies = [x[2].value for x in self.direction_table]
self.update_size_dia()
if self.round_above.get_active():
rounding = "above"
elif self.round_below.get_active():
rounding = "below"
elif self.round_closest.get_active():
rounding = "closest"
else:
raise RuntimeError("No rounding!")
self.atoms = wulff_construction(self.legal_element, surfaces,
surfaceenergies,
self.size_n_adj.value,
self.factory[struct],
rounding, lc)
self.pybut.python = py_template_wulff % {'element': self.legal_element,
'surfaces': str(surfaces),
'energies': str(surfaceenergies),
'latconst': lc_str,
'natoms': self.size_n_adj.value,
'structure': struct,
'rounding': rounding
}
self.makeinfo()
def clearatoms(self):
self.atoms = None
self.pybut.python = None
def get_atomic_volume(self):
s = self.list_of_structures[self.structure.get_active()]
a = self.lattice_const_a.value
c = self.lattice_const_c.value
if s == 'fcc':
return a**3 / 4
elif s == 'bcc':
return a**3 / 2
elif s == 'sc':
return a**3
elif s == 'hcp':
return np.sqrt(3.0)/2 * a * a * c / 2
elif s == 'graphite':
return np.sqrt(3.0)/2 * a * a * c / 4
else:
raise RuntimeError("Unknown structure: "+s)
def makeinfo(self):
"""Fill in information field about the atoms.
Also turns the Wulff construction buttons [Larger] and
[Smaller] on and off.
"""
if self.atoms is None:
self.natoms_label.set_label("-")
self.dia1_label.set_label("-")
self.smaller_button.set_sensitive(False)
self.larger_button.set_sensitive(False)
else:
self.natoms_label.set_label(str(len(self.atoms)))
at_vol = self.get_atomic_volume()
dia = 2 * (3 * len(self.atoms) * at_vol / (4 * np.pi))**(1.0/3.0)
self.dia1_label.set_label(_("%.1f Å") % (dia,))
self.smaller_button.set_sensitive(True)
self.larger_button.set_sensitive(True)
def apply(self, *args):
self.makeatoms()
if self.atoms is not None:
self.gui.new_atoms(self.atoms)
return True
else:
oops(_("No valid atoms."),
_("You have not (yet) specified a consistent set of "
"parameters."))
return False
def ok(self, *args):
if self.apply():
self.destroy()
|