/usr/share/pyshared/ase/gui/scaling.py is in python-ase 3.6.0.2515-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | # encoding: utf-8
"Module for homogeneous deformation and calculations of elastic constants."
import gtk
from gettext import gettext as _
from ase.gui.simulation import Simulation
from ase.gui.minimize import MinimizeMixin
from ase.gui.energyforces import OutputFieldMixin
from ase.gui.widgets import oops, pack, AseGuiCancelException
import ase
import numpy as np
scaling_txt = """\
This module is intended for calculating elastic constants by homogeneously
deforming a system."""
help_txt = """
The homogeneous scaling module changes the size of a system by stretching it
along on or more directions. Small amounts of deformation can be used to
calculate elastic constants, large amounts to simulate plastic deformation.
You will have to choose along which axis/axes the deformation is done. Usually,
it only makes sense to deform along axes with periodic boundary conditions. The
<b>amount of deformation</b> is set in the Deformation frame. A scale factor of
e.g. 0.01 means that the system is changed incrementally from being 1% smaller
than the initial configuration to 1% larger. The offset alters this so it is
not symmetric around 0% deformation. A check-box can disable the negative
deformation (compression).
<b>'Atomic relaxations'</b> means that the individual atoms are allowed to move
relative to the unit cell. This is done by performing an energy minimization
for each configuration. You will have to choose the algorithm and minimization
parameters.
During the deformation, a number of steps is taken, with different system sizes.
You can choose to load all configurations into the main window as a movie, to
only load the configuration with the lowest energy, or to keep the original
configuration loaded. <b>Important:</b> If you repeat the calculation by
pressing [Run] a second time, the starting configuration will have changed
unless you keep the original configuration.
"""
class HomogeneousDeformation(Simulation, MinimizeMixin, OutputFieldMixin):
"Window for homogeneous deformation and elastic constants."
use_scrollbar = True
def __init__(self, gui):
Simulation.__init__(self, gui)
self.set_title(_("Homogeneous scaling"))
self.scaling_is_ready = False
vbox = gtk.VBox()
self.packtext(vbox, scaling_txt)
self.packimageselection(vbox, txt1="", txt2="")
self.start_radio_nth.set_active(True)
pack(vbox, gtk.Label(""))
# Radio buttons for choosing deformation mode.
tbl = gtk.Table(4,3)
for i, l in enumerate([_('3D deformation '),
_('2D deformation '),
_('1D deformation ')]):
lbl = gtk.Label(l)
tbl.attach(lbl, i, i+1, 0, 1)
self.radio_bulk = gtk.RadioButton(None, _("Bulk"))
tbl.attach(self.radio_bulk, 0, 1, 1, 2)
self.radio_xy = gtk.RadioButton(self.radio_bulk, _("xy-plane"))
tbl.attach(self.radio_xy, 1, 2, 1, 2)
self.radio_xz = gtk.RadioButton(self.radio_bulk, _("xz-plane"))
tbl.attach(self.radio_xz, 1, 2, 2, 3)
self.radio_yz = gtk.RadioButton(self.radio_bulk, _("yz-plane"))
tbl.attach(self.radio_yz, 1, 2, 3, 4)
self.radio_x = gtk.RadioButton(self.radio_bulk, _("x-axis"))
tbl.attach(self.radio_x, 2, 3, 1, 2)
self.radio_y = gtk.RadioButton(self.radio_bulk, _("y-axis"))
tbl.attach(self.radio_y, 2, 3, 2, 3)
self.radio_z = gtk.RadioButton(self.radio_bulk, _("z-axis"))
tbl.attach(self.radio_z, 2, 3, 3, 4)
tbl.show_all()
pack(vbox, [tbl])
self.deformtable = [
(self.radio_bulk, (1,1,1)),
(self.radio_xy, (1,1,0)),
(self.radio_xz, (1,0,1)),
(self.radio_yz, (0,1,1)),
(self.radio_x, (1,0,0)),
(self.radio_y, (0,1,0)),
(self.radio_z, (0,0,1))]
self.allow_non_pbc = gtk.CheckButton(
_("Allow deformation along non-periodic directions."))
pack(vbox, [self.allow_non_pbc])
self.allow_non_pbc.connect('toggled', self.choose_possible_deformations)
# Parameters for the deformation
framedef = gtk.Frame(_("Deformation:"))
vbox2 = gtk.VBox()
vbox2.show()
framedef.add(vbox2)
self.max_scale = gtk.Adjustment(0.010, 0.001, 10.0, 0.001)
max_scale_spin = gtk.SpinButton(self.max_scale, 10.0, 3)
pack(vbox2, [gtk.Label(_("Maximal scale factor: ")), max_scale_spin])
self.scale_offset = gtk.Adjustment(0.0, -10.0, 10.0, 0.001)
self.scale_offset_spin = gtk.SpinButton(self.scale_offset, 10.0, 3)
pack(vbox2, [gtk.Label(_("Scale offset: ")), self.scale_offset_spin])
self.nsteps = gtk.Adjustment(5, 3, 1000, 1)
nsteps_spin = gtk.SpinButton(self.nsteps, 1, 0)
pack(vbox2, [gtk.Label(_("Number of steps: ")), nsteps_spin])
self.pull = gtk.CheckButton(_("Only positive deformation"))
pack(vbox2, [self.pull])
self.pull.connect('toggled', self.pull_toggled)
# Atomic relaxations
framerel = gtk.Frame(_("Atomic relaxations:"))
vbox2 = gtk.VBox()
vbox2.show()
framerel.add(vbox2)
self.radio_relax_on = gtk.RadioButton(None, _("On "))
self.radio_relax_off = gtk.RadioButton(self.radio_relax_on, _("Off"))
self.radio_relax_off.set_active(True)
pack(vbox2, [self.radio_relax_on, self.radio_relax_off])
self.make_minimize_gui(vbox2)
for r in (self.radio_relax_on, self.radio_relax_off):
r.connect("toggled", self.relax_toggled)
self.relax_toggled()
pack(vbox, [framedef, gtk.Label(" "), framerel])
pack(vbox, gtk.Label(""))
# Results
pack(vbox, [gtk.Label(_("Results:"))])
self.radio_results_keep = gtk.RadioButton(
None, _("Keep original configuration"))
self.radio_results_optimal = gtk.RadioButton(
self.radio_results_keep, _("Load optimal configuration"))
self.radio_results_all = gtk.RadioButton(
self.radio_results_optimal, _("Load all configurations"))
self.radio_results_keep.set_active(True)
pack(vbox, [self.radio_results_keep])
pack(vbox, [self.radio_results_optimal])
pack(vbox, [self.radio_results_all])
# Output field
#label = gtk.Label("Strain\t\tEnergy [eV]\n")
outframe = self.makeoutputfield(None,
heading=_("Strain\t\tEnergy [eV]"))
fitframe = gtk.Frame(_("Fit:"))
vbox2 = gtk.VBox()
vbox2.show()
fitframe.add(vbox2)
self.radio_fit_2 = gtk.RadioButton(None, _("2nd"))
self.radio_fit_3 = gtk.RadioButton(self.radio_fit_2, _("3rd"))
self.radio_fit_2.connect("toggled", self.change_fit)
self.radio_fit_3.connect("toggled", self.change_fit)
self.radio_fit_3.set_active(True)
pack(vbox2, [gtk.Label(_("Order of fit: ")), self.radio_fit_2,
self.radio_fit_3])
pack(vbox2, [gtk.Label("")])
scrwin = gtk.ScrolledWindow()
scrwin.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)
self.fit_output = gtk.TextBuffer()
txtview = gtk.TextView(self.fit_output)
txtview.set_editable(False)
scrwin.add(txtview)
scrwin.show_all()
self.fit_win = scrwin
vbox2.pack_start(scrwin, True, True, 0)
hbox = gtk.HBox(homogeneous=True)
for w in [outframe, fitframe]:
hbox.pack_start(w)
w.show()
pack(vbox, hbox)
pack(vbox, gtk.Label(""))
# Status field
self.status_label = gtk.Label("")
pack(vbox, [self.status_label])
# Activate the right deformation buttons
self.choose_possible_deformations(first=True)
# Run buttons etc.
self.makebutbox(vbox, helptext=help_txt)
vbox.show()
if self.use_scrollbar:
self.scrwin = gtk.ScrolledWindow()
self.scrwin.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC)
self.scrwin.add_with_viewport(vbox)
self.scrwin.show()
self.add(self.scrwin)
self.scaling_is_ready = True
self.set_reasonable_size()
else:
self.add(vbox)
self.show()
self.gui.register_vulnerable(self)
def set_reasonable_size(self, resize=False):
if not self.use_scrollbar or not self.scaling_is_ready:
return
x, y = self.scrwin.get_children()[0].size_request()
x += self.scrwin.get_vscrollbar().size_request()[0] + 5
y += self.scrwin.get_hscrollbar().size_request()[1] + 5
print x,y
if resize:
xdef, ydef = self.get_default_size()
xnow, ynow = self.get_size()
if xdef == xnow and ydef == ynow:
# The user has not changed the size. Resize should be OK
self.resize(x,y)
self.set_default_size(x,y)
else:
self.set_default_size(x,y)
def min_algo_specific(self, *args):
MinimizeMixin.min_algo_specific(self, *args)
self.set_reasonable_size(resize=True)
def choose_possible_deformations(self, widget=None, first=False):
"""Turn on sensible radio buttons.
Only radio buttons corresponding to deformations in directions
with periodic boundary conditions should be turned on.
"""
if self.setup_atoms():
pbc = self.atoms.get_pbc()
else:
pbc = np.array([False, False, False], bool)
if (pbc == [True, True, True]).all():
self.allow_non_pbc.set_active(False)
self.allow_non_pbc.set_sensitive(False)
else:
self.allow_non_pbc.set_sensitive(True)
if self.allow_non_pbc.get_active():
pbc = [True, True, True] #All is allowed
self.radio_relax_off.set_active(True)
self.radio_relax_on.set_sensitive(False)
else:
self.radio_relax_on.set_sensitive(True)
for radio, requirement in self.deformtable:
ok = True
for i in range(3):
if requirement[i] and not pbc[i]:
ok = False
radio.set_sensitive(ok)
if first and ok:
# The first acceptable choice, choose it to prevent
# inconsistent state.
radio.set_active(True)
first = False
def relax_toggled(self, *args):
"Turn minimization widgets on or off."
state = self.radio_relax_on.get_active()
for widget in (self.algo, self.fmax_spin, self.steps_spin):
widget.set_sensitive(state)
def pull_toggled(self, *args):
"When positive def. only, the scale offset is turned off."
self.scale_offset_spin.set_sensitive(not self.pull.get_active())
def notify_atoms_changed(self):
"When atoms have changed, check for the number of images."
self.setupimageselection()
self.choose_possible_deformations()
self.set_reasonable_size(resize=True)
def get_deformation_axes(self):
"""Return which axes the user wants to deform along."""
for but, deform in self.deformtable:
if but.get_active():
return np.array(deform)
# No deformation chosen!
oops("No deformation chosen: Please choose a deformation mode.")
return False
def run(self, *args):
"""Make the deformation."""
self.output.set_text("")
if not self.setup_atoms():
return
deform_axes = self.get_deformation_axes()
if deform_axes is False:
return #Nothing to do!
# Prepare progress bar
if self.radio_relax_on.get_active():
fmax = self.fmax.value
mininame = self.minimizers[self.algo.get_active()]
self.begin(mode="scale/min", algo=mininame, fmax=fmax,
steps=self.steps.value, scalesteps=self.nsteps.value)
else:
self.begin(mode="scale", scalesteps=self.nsteps.value)
try:
logger_func = self.gui.simulation['progress'].get_logger_stream
except (KeyError, AttributeError):
logger = None
else:
logger = logger_func() # Don't catch errors in the function.
# Display status message
self.status_label.set_text(_("Running ..."))
self.status_label.modify_fg(gtk.STATE_NORMAL,
gtk.gdk.color_parse('#AA0000'))
while gtk.events_pending():
gtk.main_iteration()
# Do the scaling
scale = self.max_scale.value
if self.pull.get_active():
steps = np.linspace(0, scale, self.nsteps.value)
else:
steps = np.linspace(-scale, scale, self.nsteps.value)
steps += self.scale_offset.value
undef_cell = self.atoms.get_cell()
results = []
#txt = "Strain\t\tEnergy [eV]\n"
txt = ""
# If we load all configurations, prepare it.
if self.radio_results_all.get_active():
self.prepare_store_atoms()
stored_atoms = False
try:
# Now, do the deformation
for i, d in enumerate(steps):
deformation = np.diag(1.0 + d * deform_axes)
self.atoms.set_cell(np.dot(undef_cell, deformation),
scale_atoms=True)
if self.gui.simulation.has_key('progress'):
self.gui.simulation['progress'].set_scale_progress(i)
if self.radio_relax_on.get_active():
algo = getattr(ase.optimize, mininame)
if mininame == "MDMin":
minimizer = algo(self.atoms, logfile=logger,
dt=self.mdmin_dt.value)
else:
minimizer = algo(self.atoms, logfile=logger)
minimizer.run(fmax=fmax, steps=self.steps.value)
e = self.atoms.get_potential_energy()
results.append((d, e))
txt = txt + ("%.5f\t\t%.5f\n" % (d, e))
self.output.set_text(txt)
if self.radio_results_all.get_active():
self.store_atoms()
stored_atoms = True
except AseGuiCancelException:
# Update display to reflect cancellation of simulation.
self.status_label.set_text(_("Calculation CANCELLED."))
self.status_label.modify_fg(gtk.STATE_NORMAL,
gtk.gdk.color_parse('#AA4000'))
except MemoryError:
self.status_label.set_text(_("Out of memory, consider using "
"LBFGS instead"))
self.status_label.modify_fg(gtk.STATE_NORMAL,
gtk.gdk.color_parse('#AA4000'))
else:
# Update display to reflect succesful end of simulation.
self.status_label.set_text(_("Calculation completed."))
self.status_label.modify_fg(gtk.STATE_NORMAL,
gtk.gdk.color_parse('#007700'))
if results:
self.do_fit(np.array(results))
if self.radio_results_optimal.get_active():
if self.minimum_ok:
deformation = np.diag(1.0 + self.x0 * deform_axes)
self.atoms.set_cell(np.dot(undef_cell, deformation),
scale_atoms=True)
if self.radio_relax_on.get_active():
if self.gui.simulation.has_key('progress'):
self.gui.simulation['progress'].set_scale_progress(
len(steps))
algo = getattr(ase.optimize, mininame)
minimizer = algo(self.atoms, logfile=logger)
minimizer.run(fmax=fmax, steps=self.steps.value)
# Store the optimal configuration.
self.prepare_store_atoms()
self.store_atoms()
stored_atoms = True
else:
oops(_("No trustworthy minimum: Old configuration kept."))
self.activate_output()
if stored_atoms:
self.gui.notify_vulnerable()
self.end()
# If we store all configurations: Open movie window and energy graph
if stored_atoms and self.gui.images.nimages > 1:
self.gui.movie()
assert not np.isnan(self.gui.images.E[0])
if not self.gui.plot_graphs_newatoms():
expr = 'i, e - E[-1]'
self.gui.plot_graphs(expr=expr)
# Continuations should use the best image
nbest = np.argmin(np.array(results)[:,1])
self.start_nth_adj.value = nbest
def change_fit(self, widget):
"Repeat the fitting if the order is changed."
# It may be called both for the button being turned on and the
# one being turned off. But we only want to call do_fit once.
# And only if there are already cached results (ie. if the
# order is changed AFTER the calculation is done).
if widget.get_active() and getattr(self, "results", None) is not None:
self.do_fit(None)
def do_fit(self, results):
"Fit the results to a polynomial"
if results is None:
results = self.results # Use cached results
else:
self.results = results # Keep for next time
self.minimum_ok = False
if self.radio_fit_3.get_active():
order = 3
else:
order = 2
if len(results) < 3:
txt = (_("Insufficent data for a fit\n(only %i data points)\n")
% (len(results),) )
order = 0
elif len(results) == 3 and order == 3:
txt = _("REVERTING TO 2ND ORDER FIT\n(only 3 data points)\n\n")
order = 2
else:
txt = ""
if order > 0:
fit0 = np.poly1d(np.polyfit(results[:,0], results[:,1], order))
fit1 = np.polyder(fit0, 1)
fit2 = np.polyder(fit1, 1)
x0 = None
for t in np.roots(fit1):
if fit2(t) > 0:
x0 = t
break
if x0 is None:
txt = txt + _("No minimum found!")
else:
e0 = fit0(x0)
e2 = fit2(x0)
txt += "E = "
if order == 3:
txt += "A(x - x0)³ + "
txt += "B(x - x0)² + C\n\n"
txt += "B = %.5g eV\n" % (e2,)
txt += "C = %.5g eV\n" % (e0,)
txt += "x0 = %.5g\n" % (x0,)
lowest = self.scale_offset.value - self.max_scale.value
highest = self.scale_offset.value + self.max_scale.value
if x0 < lowest or x0 > highest:
txt += _("\nWARNING: Minimum is outside interval\n")
txt += _("It is UNRELIABLE!\n")
else:
self.minimum_ok = True
self.x0 = x0
self.fit_output.set_text(txt)
|