This file is indexed.

/usr/share/pyshared/ase/gui/surfaceslab.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# encoding: utf-8
"""surfaceslab.py - Window for setting up surfaces
"""

import gtk
from gettext import gettext as _
from ase.gui.widgets import pack, cancel_apply_ok, oops
from ase.gui.pybutton import PyButton
from ase.gui.setupwindow import SetupWindow
import ase.lattice.surface as _surf
import ase
import numpy as np

introtext = _("""\
  Use this dialog to create surface slabs.  Select the element by
writing the chemical symbol or the atomic number in the box.  Then
select the desired surface structure.  Note that some structures can
be created with an othogonal or a non-orthogonal unit cell, in these
cases the non-orthogonal unit cell will contain fewer atoms.

  If the structure matches the experimental crystal structure, you can
look up the lattice constant, otherwise you have to specify it
yourself.""")

# Name, structure, orthogonal, support-nonorthogonal, function
surfaces = [(_('FCC(100)'), _('fcc'), True, False, _surf.fcc100),
            (_('FCC(110)'), _('fcc'), True, False, _surf.fcc110),
            (_('FCC(111) non-orthogonal'), _('fcc'), False, True, 
             _surf.fcc111),
            (_('FCC(111) orthogonal'), _('fcc'), True, True, _surf.fcc111),
            (_('BCC(100)'), _('bcc'), True, False, _surf.bcc100),
            (_('BCC(110) non-orthogonal'), _('bcc'), False, True, 
             _surf.bcc110),
            (_('BCC(110) orthogonal'), _('bcc'), True, True, _surf.bcc110),
            (_('BCC(111) non-orthogonal'), _('bcc'), False, True, 
             _surf.bcc111),
            (_('BCC(111) orthogonal'), _('bcc'), True, True, _surf.bcc111),
            (_('HCP(0001) non-orthogonal'), _('hcp'), False, True, 
             _surf.hcp0001),
            (_('HCP(0001) orthogonal'), _('hcp'), True, True, _surf.hcp0001),
            (_('HCP(10-10) orthogonal'), _('hcp'), True, False, 
             _surf.hcp10m10),
            (_('DIAMOND(100) orthogonal'), _('diamond'), True, False,
             _surf.diamond100),
            (_('DIAMOND(111) non-orthogonal'), _('diamond'), False, True,
             _surf.diamond111),
            ]

py_template = """
from ase.lattice.surface import %(func)s

atoms = %(func)s(symbol='%(symbol)s', size=%(size)s,
    a=%(a).3f, vacuum=%(vacuum).3f%(orthoarg)s)
"""

class SetupSurfaceSlab(SetupWindow):
    """Window for setting up a surface."""
    def __init__(self, gui):
        SetupWindow.__init__(self)
        self.set_title(_("Surface"))
        self.atoms = None

        vbox = gtk.VBox()

        # Intoductory text
        self.packtext(vbox, introtext)
             
        # Choose the element
        label = gtk.Label(_("Element: "))
        element = gtk.Entry(max=3)
        self.element = element
        self.elementinfo = gtk.Label("")
        pack(vbox, [label, element, self.elementinfo])
        self.element.connect('activate', self.update)
        self.legal_element = False
        
        # Choose the surface structure
        label = gtk.Label(_("Structure: "))
        self.structchoice = gtk.combo_box_new_text()
        self.surfinfo = {}
        for s in surfaces:
            assert len(s) == 5
            self.structchoice.append_text(s[0])
            self.surfinfo[s[0]] = s
        pack(vbox, [label, self.structchoice])
        self.structchoice.connect('changed', self.update)

        # Choose the lattice constant
        tbl = gtk.Table(2, 3)
        label = gtk.Label(_("Lattice constant: "))
        tbl.attach(label, 0, 1, 0, 1)
        vbox2 = gtk.VBox()          # For the non-HCP stuff
        self.vbox_hcp = gtk.VBox()  # For the HCP stuff.
        self.lattice_const = gtk.Adjustment(3.0, 0.0, 1000.0, 0.01)
        lattice_box = gtk.SpinButton(self.lattice_const, 10.0, 3)
        lattice_box.numeric = True
        pack(vbox2, [gtk.Label(_("a:")), lattice_box, gtk.Label(_("Å"))])
        tbl.attach(vbox2, 1, 2, 0, 1)
        lattice_button = gtk.Button(_("Get from database"))
        tbl.attach(lattice_button, 2, 3, 0, 1)
        # HCP stuff
        self.hcp_ideal = (8.0/3)**(1.0/3)
        self.lattice_const_c = gtk.Adjustment(self.lattice_const.value * self.hcp_ideal,
                                              0.0, 1000.0, 0.01)
        lattice_box_c = gtk.SpinButton(self.lattice_const_c, 10.0, 3)
        lattice_box_c.numeric = True
        pack(self.vbox_hcp, [gtk.Label("c:"), 
                             lattice_box_c, gtk.Label("Å")])
        self.hcp_c_over_a_format = "c/a: %.3f " + _("(%.1f %% of ideal)")
        self.hcp_c_over_a_label = gtk.Label(self.hcp_c_over_a_format % \
                                                (self.hcp_ideal, 100.0))
        pack(self.vbox_hcp, [self.hcp_c_over_a_label])
        tbl.attach(self.vbox_hcp, 1, 2, 1, 2)
        tbl.show_all()
        pack(vbox, [tbl])
        self.lattice_const.connect('value-changed', self.update)
        self.lattice_const_c.connect('value-changed', self.update)
        lattice_button.connect('clicked', self.get_lattice_const)
        pack(vbox, gtk.Label(""))

        # System size
        self.size = [gtk.Adjustment(1, 1, 100, 1) for i in range(3)]
        buttons = [gtk.SpinButton(s, 0, 0) for s in self.size]
        self.vacuum = gtk.Adjustment(10.0, 0, 100.0, 0.1)
        vacuum_box = gtk.SpinButton(self.vacuum, 0.0, 1)
        pack(vbox, [gtk.Label(_("Size: \tx: ")), buttons[0],
                    gtk.Label(_(" unit cells"))])
        pack(vbox, [gtk.Label(_("\t\ty: ")), buttons[1],
                    gtk.Label(_(" unit cells"))])
        pack(vbox, [gtk.Label(_("      \t\tz: ")), buttons[2],
                    gtk.Label(_(" layers,  ")),
                    vacuum_box, gtk.Label(_(" Å vacuum"))])
        self.nosize = _("\t\tNo size information yet.")
        self.sizelabel = gtk.Label(self.nosize)
        pack(vbox, [self.sizelabel])
        for s in self.size:
            s.connect('value-changed', self.update)
        self.vacuum.connect('value-changed', self.update)
        pack(vbox, gtk.Label(""))

        # Buttons
        self.pybut = PyButton(_("Creating a surface slab."))
        self.pybut.connect('clicked', self.update)
        buts = cancel_apply_ok(cancel=lambda widget: self.destroy(),
                               apply=self.apply,
                               ok=self.ok)
        pack(vbox, [self.pybut, buts], end=True, bottom=True)
        
        self.add(vbox)
        vbox.show()
        self.show()
        self.gui = gui

        # Hide the HCP stuff to begin with.
        self.vbox_hcp.hide_all()

    # update_element inherited from SetupWindow

    def update(self, *args):
        "Called when something has changed."
        struct = self.structchoice.get_active_text()
        if struct:
            structinfo = self.surfinfo[struct]
            if structinfo[1] == 'hcp':
                self.vbox_hcp.show_all()
                ca = self.lattice_const_c.value / self.lattice_const.value
                self.hcp_c_over_a_label.set_text(self.hcp_c_over_a_format %
                                                 (ca, 100 * ca / self.hcp_ideal))
            else:
                self.vbox_hcp.hide_all()
        # Abort if element or structure is invalid
        if not (self.update_element() and struct):
            self.sizelabel.set_text(self.nosize)
            self.atoms = None
            self.pybut.python = None
            return False
        # Make the atoms
        assert self.legal_element
        kw = {}
        kw2 = {}
        if structinfo[3]:  # Support othogonal keyword?
            kw['orthogonal'] = structinfo[2]
            kw2['orthoarg'] = ', orthogonal=' + str(kw['orthogonal'])
        else:
            kw2['orthoarg'] = ''
        kw2['func'] = structinfo[4].__name__
        kw['symbol'] = self.legal_element
        kw['size'] = [int(s.value) for s in self.size]
        kw['a'] = self.lattice_const.value
        kw['vacuum'] = self.vacuum.value
        # Now create the atoms
        try:
            self.atoms = structinfo[4](**kw)
        except ValueError, e:
            # The values were illegal - for example some size
            # constants must be even for some structures.
            self.pybut.python = None
            self.atoms = None
            self.sizelabel.set_text(str(e).replace(".  ", ".\n"))
            return False
        kw2.update(kw)
        self.pybut.python = py_template % kw2
        # Find the heights of the unit cell
        h = np.zeros(3)
        uc = self.atoms.get_cell()
        for i in range(3):
            norm = np.cross(uc[i-1], uc[i-2])
            norm /= np.sqrt(np.dot(norm, norm))
            h[i] = np.abs(np.dot(norm, uc[i]))
        natoms = len(self.atoms)
        txt = ("\t\t%.2f Å x %.2f Å x %.2f Å,  %s"
               % (h[0], h[1], h[2], _('%i atoms.') % natoms))
        self.sizelabel.set_text(txt)
        return True
    
    def get_lattice_const(self, *args):
        if not self.update_element():
            oops(_("Invalid element."))
            return
        z = ase.atomic_numbers[self.legal_element]
        ref = ase.data.reference_states[z]
        surface = self.structchoice.get_active_text()
        if not surface:
            oops(_("No structure specified!"))
            return
        struct = self.surfinfo[surface][1]
        if ref is None or ref['symmetry'] != struct:
            from ase.data.alternatives import alternative_structures
            alt = alternative_structures[z]
            if alt and alt['symmetry'] == struct:
                ref = alt
            else:
                oops(_('%(struct)s lattice constant unknown for %(element)s.')
                     % dict(struct=struct.upper(), element=self.legal_element))
        
        a = ref['a']
        self.lattice_const.set_value(a)
        if struct == 'hcp':
            c = ref['c/a'] * a
            self.lattice_const_c.set_value(c)

    def apply(self, *args):
        self.update()
        if self.atoms is not None:
            self.gui.new_atoms(self.atoms)
            return True
        else:
            oops(_("No valid atoms."),
                 _("You have not (yet) specified "
                   "a consistent set of parameters."))
            return False

    def ok(self, *args):
        if self.apply():
            self.destroy()