/usr/share/pyshared/ase/lattice/bravais.py is in python-ase 3.6.0.2515-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | """Bravais.py - class for generating Bravais lattices etc.
This is a base class for numerous classes setting up pieces of crystal.
"""
import math
import numpy as np
from ase.atoms import Atoms
from ase.utils import gcd
import ase.data
class Bravais:
"""Bravais lattice factory.
This is a base class for the objects producing various lattices
(SC, FCC, ...).
"""
# The following methods are NOT defined here, but must be defined
# in classes inhering from Bravais:
# get_lattice_constant
# make_crystal_basis
# The following class attributes are NOT defined here, but must be defined
# in classes inhering from Bravais:
# int_basis
# inverse_basis
other = {0:(1,2), 1:(2,0), 2:(0,1)}
# For Bravais lattices with a basis, set the basis here. Leave as
# None if no basis is present.
bravais_basis = None
# If more than one type of element appear in the crystal, give the
# order here. For example, if two elements appear in a 3:1 ratio,
# bravais_basis could contain four vectors, and element_basis
# could be (0,0,1,0) - the third atom in the basis is different
# from the other three. Leave as None if all atoms are of the
# same type.
element_basis = None
# How small numbers should be considered zero in the unit cell?
chop_tolerance = 1e-10
def __call__(self, symbol,
directions=(None,None,None), miller=(None,None,None),
size=(1,1,1), latticeconstant=None,
pbc=True, align=True, debug=0):
"Create a lattice."
self.size = size
self.pbc = pbc
self.debug = debug
self.process_element(symbol)
self.find_directions(directions, miller)
if self.debug:
self.print_directions_and_miller()
self.convert_to_natural_basis()
if self.debug >= 2:
self.print_directions_and_miller(" (natural basis)")
if latticeconstant is None:
if self.element_basis is None:
self.latticeconstant = self.get_lattice_constant()
else:
raise ValueError,\
"A lattice constant must be specified for a compound"
else:
self.latticeconstant = latticeconstant
if self.debug:
print "Expected number of atoms in unit cell:", self.calc_num_atoms()
if self.debug >= 2:
print "Bravais lattice basis:", self.bravais_basis
if self.bravais_basis is not None:
print " ... in natural basis:", self.natural_bravais_basis
self.make_crystal_basis()
self.make_unit_cell()
if align:
self.align()
return self.make_list_of_atoms()
def align(self):
"Align the first axis along x-axis and the second in the x-y plane."
degree = 180/np.pi
if self.debug >= 2:
print "Basis before alignment:"
print self.basis
if self.basis[0][0]**2 + self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2:
# First basis vector along y axis - rotate 90 deg along z
t = np.array([[0, -1, 0],
[1, 0, 0],
[0, 0, 1]], np.float)
self.basis = np.dot(self.basis, t)
transf = t
if self.debug >= 2:
print "Rotating -90 degrees around z axis for numerical stability."
print self.basis
else:
transf = np.identity(3, np.float)
assert abs(np.linalg.det(transf) - 1) < 1e-6
# Rotate first basis vector into xy plane
theta = math.atan2(self.basis[0,2], self.basis[0,0])
t = np.array([[np.cos(theta), 0, -np.sin(theta)],
[ 0, 1, 0 ],
[np.sin(theta), 0, np.cos(theta) ]])
self.basis = np.dot(self.basis, t)
transf = np.dot(transf, t)
if self.debug >= 2:
print "Rotating %f degrees around y axis." % (-theta*degree,)
print self.basis
assert abs(np.linalg.det(transf) - 1) < 1e-6
# Rotate first basis vector to point along x axis
theta = math.atan2(self.basis[0,1], self.basis[0,0])
t = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[ 0, 0, 1]])
self.basis = np.dot(self.basis, t)
transf = np.dot(transf, t)
if self.debug >= 2:
print "Rotating %f degrees around z axis." % (-theta*degree,)
print self.basis
assert abs(np.linalg.det(transf) - 1) < 1e-6
# Rotate second basis vector into xy plane
theta = math.atan2(self.basis[1,2], self.basis[1,1])
t = np.array([[1, 0, 0],
[0, np.cos(theta), -np.sin(theta)],
[0, np.sin(theta), np.cos(theta)]])
self.basis = np.dot(self.basis, t)
transf = np.dot(transf, t)
if self.debug >= 2:
print "Rotating %f degrees around x axis." % (-theta*degree,)
print self.basis
assert abs(np.linalg.det(transf) - 1) < 1e-6
# Now we better rotate the atoms as well
self.atoms = np.dot(self.atoms, transf)
# ... and rotate miller_basis
self.miller_basis = np.dot(self.miller_basis, transf)
def make_list_of_atoms(self):
"Repeat the unit cell."
nrep = self.size[0] * self.size[1] * self.size[2]
if nrep <= 0:
raise ValueError, "Cannot create a non-positive number of unit cells"
# Now the unit cells must be merged.
a2 = []
e2 = []
for i in xrange(self.size[0]):
offset = self.basis[0] * i
a2.append(self.atoms + offset[np.newaxis,:])
e2.append(self.elements)
atoms = np.concatenate(a2)
elements = np.concatenate(e2)
a2 = []
e2 = []
for j in xrange(self.size[1]):
offset = self.basis[1] * j
a2.append(atoms + offset[np.newaxis,:])
e2.append(elements)
atoms = np.concatenate(a2)
elements = np.concatenate(e2)
a2 = []
e2 = []
for k in xrange(self.size[2]):
offset = self.basis[2] * k
a2.append(atoms + offset[np.newaxis,:])
e2.append(elements)
atoms = np.concatenate(a2)
elements = np.concatenate(e2)
del a2, e2
assert len(atoms) == nrep * len(self.atoms)
basis = np.array([[self.size[0],0,0],
[0,self.size[1],0],
[0,0,self.size[2]]])
basis = np.dot(basis, self.basis)
# Tiny elements should be replaced by zero. The cutoff is
# determined by chop_tolerance which is a class attribute.
basis = np.where(np.abs(basis) < self.chop_tolerance,
0.0, basis)
# None should be replaced, and memory should be freed.
lattice = Lattice(positions=atoms, cell=basis, numbers=elements,
pbc=self.pbc)
lattice.millerbasis = self.miller_basis
# Add info for lattice.surface.AddAdsorbate
lattice._addsorbate_info_size = np.array(self.size[:2])
return lattice
def process_element(self, element):
"Extract atomic number from element"
# The types that can be elements: integers and strings
if self.element_basis is None:
if isinstance(element, type("string")):
self.atomicnumber = ase.data.atomic_numbers[element]
elif isinstance(element, int):
self.atomicnumber = element
else:
raise TypeError("The symbol argument must be a string or an atomic number.")
else:
atomicnumber = []
try:
if len(element) != max(self.element_basis) + 1:
oops = True
else:
oops = False
except TypeError:
oops = True
if oops:
raise TypeError(
("The symbol argument must be a sequence of length %d"
+" (one for each kind of lattice position")
% (max(self.element_basis)+1,))
for e in element:
if isinstance(e, type("string")):
atomicnumber.append(ase.data.atomic_numbers[e])
elif isinstance(e, int):
atomicnumber.append(e)
else:
raise TypeError("The symbols argument must be a sequence of strings or atomic numbers.")
self.atomicnumber = [atomicnumber[i] for i in self.element_basis]
assert len(self.atomicnumber) == len(self.bravais_basis)
def convert_to_natural_basis(self):
"Convert directions and miller indices to the natural basis."
self.directions = np.dot(self.directions, self.inverse_basis)
if self.bravais_basis is not None:
self.natural_bravais_basis = np.dot(self.bravais_basis,
self.inverse_basis)
for i in (0,1,2):
self.directions[i] = reduceindex(self.directions[i])
for i in (0,1,2):
(j,k) = self.other[i]
self.miller[i] = reduceindex(self.handedness *
cross(self.directions[j],
self.directions[k]))
def calc_num_atoms(self):
v = int(round(abs(np.linalg.det(self.directions))))
if self.bravais_basis is None:
return v
else:
return v * len(self.bravais_basis)
def make_unit_cell(self):
"Make the unit cell."
# Make three loops, and find the positions in the integral
# lattice. Each time a position is found, the atom is placed
# in the real unit cell by put_atom().
self.natoms = self.calc_num_atoms()
self.nput = 0
self.atoms = np.zeros((self.natoms,3), np.float)
self.elements = np.zeros(self.natoms, np.int)
self.farpoint = farpoint = sum(self.directions)
#printprogress = self.debug and (len(self.atoms) > 250)
percent = 0
# Find the radius of the sphere containing the whole system
sqrad = 0
for i in (0,1):
for j in (0,1):
for k in (0,1):
vect = (i * self.directions[0] +
j * self.directions[1] +
k * self.directions[2])
if np.dot(vect,vect) > sqrad:
sqrad = np.dot(vect,vect)
del i,j,k
# Loop along first crystal axis (i)
for (istart, istep) in ((0,1), (-1,-1)):
i = istart
icont = True
while icont:
nj = 0
for (jstart, jstep) in ((0,1), (-1,-1)):
j = jstart
jcont = True
while jcont:
nk = 0
for (kstart, kstep) in ((0,1), (-1,-1)):
k = kstart
#print "Starting line i=%d, j=%d, k=%d, step=(%d,%d,%d)" % (i,j,k,istep,jstep,kstep)
kcont = True
while kcont:
# Now (i,j,k) loops over Z^3, except that
# the loops can be cut off when we get outside
# the unit cell.
point = np.array((i,j,k))
if self.inside(point):
self.put_atom(point)
nk += 1
nj += 1
# Is k too high?
if np.dot(point,point) > sqrad:
assert not self.inside(point)
kcont = False
k += kstep
# Is j too high?
if i*i+j*j > sqrad:
jcont = False
j += jstep
# Is i too high?
if i*i > sqrad:
icont = False
i += istep
#if printprogress:
# perce = int(100*self.nput / len(self.atoms))
# if perce > percent + 10:
# print ("%d%%" % perce),
# percent = perce
assert(self.nput == self.natoms)
def inside(self, point):
"Is a point inside the unit cell?"
return (np.dot(self.miller[0], point) >= 0 and
np.dot(self.miller[0], point - self.farpoint) < 0 and
np.dot(self.miller[1], point) >= 0 and
np.dot(self.miller[1], point - self.farpoint) < 0 and
np.dot(self.miller[2], point) >= 0 and
np.dot(self.miller[2], point - self.farpoint) < 0)
def put_atom(self, point):
"Place an atom given its integer coordinates."
if self.bravais_basis is None:
# No basis - just place a single atom
pos = np.dot(point, self.crystal_basis)
if self.debug >= 2:
print ("Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f)."
% (tuple(point) + tuple(pos)))
self.atoms[self.nput] = pos
self.elements[self.nput] = self.atomicnumber
self.nput += 1
else:
for i, offset in enumerate(self.natural_bravais_basis):
pos = np.dot(point + offset, self.crystal_basis)
if self.debug >= 2:
print ("Placing an atom at (%d+%f, %d+%f, %d+%f) ~ (%.3f, %.3f, %.3f)."
% (point[0], offset[0], point[1], offset[1],
point[2], offset[2], pos[0], pos[1], pos[2]))
self.atoms[self.nput] = pos
if self.element_basis is None:
self.elements[self.nput] = self.atomicnumber
else:
self.elements[self.nput] = self.atomicnumber[i]
self.nput += 1
def find_directions(self, directions, miller):
"Find missing directions and miller indices from the specified ones."
directions = list(directions)
miller = list(miller)
# If no directions etc are specified, use a sensible default.
if directions == [None, None, None] and miller == [None, None, None]:
directions = [[1,0,0], [0,1,0], [0,0,1]]
# Now fill in missing directions and miller indices. This is an
# iterative process.
change = 1
while change:
change = False
missing = 0
for i in (0,1,2):
(j,k) = self.other[i]
if directions[i] is None:
missing += 1
if miller[j] is not None and miller[k] is not None:
directions[i] = reduceindex(cross(miller[j],
miller[k]))
change = True
if self.debug >= 2:
print "Calculating directions[%d] from miller indices" % i
if miller[i] is None:
missing += 1
if directions[j] is not None and directions[k] is not None:
miller[i] = reduceindex(cross(directions[j],
directions[k]))
change = True
if self.debug >= 2:
print "Calculating miller[%d] from directions" % i
if missing:
raise ValueError, "Specification of directions and miller indices is incomplete."
# Make sure that everything is Numeric arrays
self.directions = np.array(directions)
self.miller = np.array(miller)
# Check for left-handed coordinate system
if np.linalg.det(self.directions) < 0:
print "WARNING: Creating a left-handed coordinate system!"
self.miller = -self.miller
self.handedness = -1
else:
self.handedness = 1
# Now check for consistency
for i in (0,1,2):
(j,k) = self.other[i]
m = reduceindex(self.handedness *
cross(self.directions[j], self.directions[k]))
if sum(np.not_equal(m, self.miller[i])):
print "ERROR: Miller index %s is inconsisten with directions %d and %d" % (i,j,k)
print "Miller indices:"
print str(self.miller)
print "Directions:"
print str(self.directions)
raise ValueError, "Inconsistent specification of miller indices and directions."
def print_directions_and_miller(self, txt=""):
"Print direction vectors and Miller indices."
print "Direction vectors of unit cell%s:" % (txt,)
for i in (0,1,2):
print " ", self.directions[i]
print "Miller indices of surfaces%s:" % (txt,)
for i in (0,1,2):
print " ", self.miller[i]
class MillerInfo:
"""Mixin class to provide information about Miller indices."""
def miller_to_direction(self, miller):
"""Returns the direction corresponding to a given Miller index."""
return np.dot(miller, self.millerbasis)
class Lattice(Atoms, MillerInfo):
"""List of atoms initially containing a regular lattice of atoms.
A part from the usual list of atoms methods this list of atoms type
also has a method, `miller_to_direction`, used to convert from Miller
indices to directions in the coordinate system of the lattice.
"""
pass
# Helper functions
def cross(a, b):
"""The cross product of two vectors."""
return np.array((a[1]*b[2] - b[1]*a[2],
a[2]*b[0] - b[2]*a[0],
a[0]*b[1] - b[0]*a[1]))
def reduceindex(M):
"Reduce Miller index to the lowest equivalent integers."
oldM = M
g = gcd(M[0], M[1])
h = gcd(g, M[2])
while h != 1:
M = M/h
g = gcd(M[0], M[1])
h = gcd(g, M[2])
if np.dot(oldM, M) > 0:
return M
else:
return -M
|