This file is indexed.

/usr/share/pyshared/ase/optimize/oldqn.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright (C) 2003  CAMP
# Please see the accompanying LICENSE file for further information.

"""
Quasi-Newton algorithm
"""

__docformat__ = 'reStructuredText'

import numpy as np
import weakref,time,sys


def f(lamda,Gbar,b,radius): 
        b1 = b - lamda
        g = radius**2 - np.dot(Gbar/b1, Gbar/b1)
        return g



def scale_radius_energy(f,r):
        scale = 1.0
#       if(r<=0.01):
#               return scale
        
        if f<0.01: scale*=1.4
        if f<0.05: scale*=1.4
        if f<0.10: scale*=1.4
        if f<0.40: scale*=1.4

        if f>0.5: scale *= 1./1.4               
        if f>0.7: scale *= 1./1.4               
        if f>1.0: scale *= 1./1.4

        return scale

def scale_radius_force(f,r):
        scale = 1.0
#       if(r<=0.01):
#               return scale
        g = abs(f -1)
        if g<0.01: scale*=1.4
        if g<0.05: scale*=1.4
        if g<0.10: scale*=1.4
        if g<0.40: scale*=1.4

        if g>0.5: scale *= 1./1.4               
        if g>0.7: scale *= 1./1.4               
        if g>1.0: scale *= 1./1.4

        return scale

def find_lamda(upperlimit,Gbar,b,radius):
        lowerlimit = upperlimit
        eps = 1e-12
        step = 0.1
        while  f(lowerlimit,Gbar,b,radius) < 0:
                lowerlimit -= step
                
        converged = False

        while not converged: 

                midt = (upperlimit+lowerlimit)/2.
                lamda = midt
                fmidt = f(midt,Gbar,b,radius)
                fupper = f(upperlimit,Gbar,b,radius)
                flower = f(lowerlimit,Gbar,b,radius)
        
                if fupper*fmidt<0: 
                        lowerlimit = midt 
                else: 
                        upperlimit = midt

                if abs(upperlimit-lowerlimit)<1e-6: 
                        converged = True

        return lamda

def get_hessian_inertia(eigenvalues):
        # return number of negative modes
        n = 0
        print 'eigenvalues ',eigenvalues[0],eigenvalues[1],eigenvalues[2]
        while eigenvalues[n]<0:
                n+=1
        return n 


from numpy.linalg import eigh, solve

from ase.optimize.optimize import Optimizer



class GoodOldQuasiNewton(Optimizer):

    def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
                 fmax=None, converged=None,
                hessianupdate='BFGS',hessian=None,forcemin=True,
                verbosity=None,maxradius=None,
                diagonal=20.,radius=None,
                transitionstate = False):
            
        Optimizer.__init__(self, atoms, restart, logfile, trajectory)

        self.eps = 1e-12
        self.hessianupdate = hessianupdate
        self.forcemin = forcemin
        self.verbosity = verbosity
        self.diagonal = diagonal

        self.atoms = atoms

        n = len(self.atoms) * 3
        if radius is None: 
                self.radius = 0.05*np.sqrt(n)/10.0
        else:
                self.radius = radius

        if maxradius is None: 
                self.maxradius = 0.5*np.sqrt(n)
        else:
                self.maxradius = maxradius
                
        # 0.01 < radius < maxradius
        self.radius = max(min( self.radius, self.maxradius ), 0.0001)

        self.transitionstate = transitionstate

        # check if this is a nudged elastic band calculation
        if hasattr(atoms,'springconstant'): 
                self.forcemin=False

        self.t0 = time.time() 

    def initialize(self):pass

    def write_log(self,text):
        if self.logfile is not None:
            self.logfile.write(text + '\n')
            self.logfile.flush()

    def set_max_radius(self, maxradius):
                self.maxradius = maxradius
                self.radius = min(self.maxradius, self.radius)
                
    def set_hessian(self,hessian):
        self.hessian = hessian

    def get_hessian(self):
        if not hasattr(self,'hessian'): 
                self.set_default_hessian() 
        return self.hessian

    def set_default_hessian(self): 
        # set unit matrix
        n = len(self.atoms) * 3
        hessian = np.zeros((n,n)) 
        for i in range(n): 
                        hessian[i][i] = self.diagonal
        self.set_hessian(hessian) 

    def read_hessian(self,filename): 
        import cPickle
        f = open(filename,'r')
        self.set_hessian(cPickle.load(f))
        f.close()

    def write_hessian(self,filename): 
        import cPickle
        f = paropen(filename,'w')
        cPickle.dump(self.get_hessian(),f)
        f.close()

    def write_to_restartfile(self):
        import cPickle
        f = paropen(self.restartfile,'w')
        cPickle.dump((self.oldpos,
                      self.oldG,
                      self.oldenergy,
                      self.radius,
                      self.hessian,
                      self.energy_estimate),f)
        f.close()
        


    def update_hessian(self,pos,G):
        import copy
        if hasattr(self,'oldG'): 
                if self.hessianupdate=='BFGS': 
                        self.update_hessian_bfgs(pos,G) 
                elif self.hessianupdate== 'Powell': 
                        self.update_hessian_powell(pos,G) 
                else:           
                        self.update_hessian_bofill(pos,G) 
        else: 
                if not hasattr(self,'hessian'): 
                        self.set_default_hessian()

        self.oldpos = copy.copy(pos)
        self.oldG = copy.copy(G)

        if self.verbosity: 
                print 'hessian ',self.hessian


        
    def update_hessian_bfgs(self,pos,G): 
        n = len(self.hessian)
        dgrad = G - self.oldG
        dpos  = pos - self.oldpos
        absdpos = np.sqrt(np.dot(dpos, dpos))
        dotg  = np.dot(dgrad,dpos) 
        tvec  = np.dot(dpos,self.hessian)
        dott  = np.dot(dpos,tvec)
        if (abs(dott)>self.eps) and (abs(dotg)>self.eps): 
                for i in range(n): 
                        for j in range(n): 
                                h = dgrad[i]*dgrad[j]/dotg - tvec[i]*tvec[j]/dott
                                self.hessian[i][j] += h



    def update_hessian_powell(self,pos,G):          
        n = len(self.hessian)
        dgrad = G - self.oldG
        dpos  = pos - self.oldpos
        absdpos = np.dot(dpos, dpos)
        if absdpos<self.eps: 
                return

        dotg  = np.dot(dgrad,dpos) 
        tvec  = dgrad-np.dot(dpos,self.hessian)
        tvecdot = np.dot(tvec,tvec)
        tvecdpos = np.dot(tvec,dpos) 
        ddot = tvecdpos/absdpos

        dott  = np.dot(dpos,tvec)
        if (abs(dott)>self.eps) and (abs(dotg)>self.eps): 
                for i in range(n): 
                        for j in range(n): 
                                h = tvec[i]*dpos[j] + dpos[i]*tvec[j]-ddot*dpos[i]*dpos[j]
                                h *= 1./absdpos
                                self.hessian[i][j] += h


    def update_hessian_bofill(self,pos,G):                                                                     
        print 'update Bofill'
        n = len(self.hessian)                                                                               
        dgrad = G - self.oldG                                                                               
        dpos  = pos - self.oldpos                                                                           
        absdpos = np.dot(dpos, dpos)                                                                          
        if absdpos<self.eps: 
                return
        dotg  = np.dot(dgrad,dpos)                                                                         
        tvec  = dgrad-np.dot(dpos,self.hessian)                                                 
        tvecdot = np.dot(tvec,tvec)                                                                        
        tvecdpos = np.dot(tvec,dpos)                                                                       
        ddot = tvecdpos/absdpos                                                                             

        coef1 = 1. - tvecdpos*tvecdpos/(absdpos*tvecdot)
        coef2 = (1. - coef1)*absdpos/tvecdpos
        coef3 = coef1*tvecdpos/absdpos

        dott  = np.dot(dpos,tvec)                                                                          
        if (abs(dott)>self.eps) and (abs(dotg)>self.eps):                                                   
                for i in range(n):                                                                          
                        for j in range(n):                                                                  
                                h = coef1*(tvec[i]*dpos[j] + dpos[i]*tvec[j])-dpos[i]*dpos[j]*coef3 + coef2*tvec[i]*tvec[j]
                                h *= 1./absdpos
                                self.hessian[i][j] += h                                                     



    def step(self, f):
        """ Do one QN step
        """

        pos = self.atoms.get_positions().ravel()
        G = -self.atoms.get_forces().ravel()
        energy = self.atoms.get_potential_energy()


        self.write_iteration(energy,G)

        if hasattr(self,'oldenergy'):

                self.write_log('energies ' + str(energy) + ' ' + str(self.oldenergy))

                if self.forcemin:
                        de = 1e-4
                else:
                        de = 1e-2

                if self.transitionstate:
                        de = 0.2

                if (energy-self.oldenergy)>de:
                        self.write_log('reject step')
                        self.atoms.set_positions(self.oldpos.reshape((-1, 3)))
                        G = self.oldG
                        energy = self.oldenergy
                        self.radius *= 0.5
                else: 
                        self.update_hessian(pos,G)
                        de = energy - self.oldenergy
                        f = 1.0
                        if self.forcemin: 
                                self.write_log("energy change; actual: %f estimated: %f "%(de,self.energy_estimate))
                                if abs(self.energy_estimate)>self.eps: 
                                        f = abs((de/self.energy_estimate)-1)
                                        self.write_log('Energy prediction factor ' + str(f))
                                        # fg = self.get_force_prediction(G)
                                        self.radius *= scale_radius_energy(f,self.radius) 

                        else:
                                self.write_log("energy change; actual: %f "%(de))
                                self.radius*=1.5

                        fg = self.get_force_prediction(G)
                        self.write_log("Scale factors %f %f "%(scale_radius_energy(f,self.radius),
                                                                scale_radius_force(fg,self.radius)))
                        
                                   
                self.radius = max(min(self.radius,self.maxradius), 0.0001)
        else: 
                self.update_hessian(pos,G)

        self.write_log("new radius %f "%(self.radius))          
        self.oldenergy = energy

        b,V = eigh(self.hessian)
        V=V.T.copy()
        self.V = V

        # calculate projection of G onto eigenvectors V
        Gbar = np.dot(G,np.transpose(V))
        
        lamdas = self.get_lambdas(b,Gbar)

        D = -Gbar/(b-lamdas) 
        n = len(D)
        step = np.zeros((n))
        for i in range(n): 
                step += D[i]*V[i]

        pos = self.atoms.get_positions().ravel()
        pos += step

        energy_estimate = self.get_energy_estimate(D,Gbar,b) 
        self.energy_estimate = energy_estimate
        self.gbar_estimate = self.get_gbar_estimate(D,Gbar,b)
        self.old_gbar = Gbar

        self.atoms.set_positions(pos.reshape((-1, 3)))




    def get_energy_estimate(self,D,Gbar,b): 

        de = 0.0
        for n in range(len(D)): 
                de += D[n]*Gbar[n] + 0.5*D[n]*b[n]*D[n]
        return de

    def get_gbar_estimate(self,D,Gbar,b):
        gbar_est = (D*b) + Gbar
        self.write_log('Abs Gbar estimate ' + str(np.dot(gbar_est,gbar_est)))
        return gbar_est

    def get_lambdas(self,b,Gbar):
        lamdas = np.zeros((len(b)))

        D = -Gbar/b
        #absD = np.sqrt(np.sum(D**2))
        absD = np.sqrt(np.dot(D, D))

        eps = 1e-12
        nminus = self.get_hessian_inertia(b)

        if absD < self.radius:
                if not self.transitionstate:
                        self.write_log('Newton step') 
                        return lamdas
                else:
                        if nminus==1:
                                self.write_log('Newton step')
                                return lamdas
                        else:
                                self.write_log("Wrong inertia of Hessian matrix: %2.2f %2.2f "%(b[0],b[1]))

        else:
                self.write_log("Corrected Newton step: abs(D) = %2.2f "%(absD))

        if not self.transitionstate: 
                # upper limit
                upperlimit = min(0,b[0])-eps
                lowerlimit = upperlimit
                lamda = find_lamda(upperlimit,Gbar,b,self.radius)
                lamdas += lamda
        else:
                # upperlimit
                upperlimit = min(-b[0],b[1],0)-eps
                lamda = find_lamda(upperlimit,Gbar,b,self.radius)
                lamdas += lamda
                lamdas[0] -= 2*lamda
                
        return lamdas



    def print_hessian(self): 
        hessian = self.get_hessian()
        n = len(hessian)
        for i in range(n): 
            for j in range(n): 
                print "%2.4f " %(hessian[i][j]),
            print " "


    

    def get_hessian_inertia(self,eigenvalues):
        # return number of negative modes
        self.write_log("eigenvalues %2.2f %2.2f %2.2f "%(eigenvalues[0],
                                                        eigenvalues[1],
                                                        eigenvalues[2]))
        n = 0
        while eigenvalues[n]<0:
                n+=1
        return n

    def get_force_prediction(self,G):
        # return measure of how well the forces are predicted
        Gbar = np.dot(G,np.transpose(self.V))
        dGbar_actual = Gbar-self.old_gbar
        dGbar_predicted = Gbar-self.gbar_estimate

        f = np.dot(dGbar_actual,dGbar_predicted)/np.dot(dGbar_actual,dGbar_actual)
        self.write_log('Force prediction factor ' + str(f))
        return f

    def write_iteration(self,energy,G):pass