This file is indexed.

/usr/share/pyshared/ase/optimize/optimize.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Structure optimization. """

import sys
import pickle
import time
from math import sqrt
from os.path import isfile

import numpy as np

from ase.parallel import rank, barrier
from ase.io.trajectory import PickleTrajectory


class Dynamics:
    """Base-class for all MD and structure optimization classes.

    Dynamics(atoms, logfile)

    atoms: Atoms object
        The Atoms object to operate on
    logfile: file object or str
        If *logfile* is a string, a file with that name will be opened.
        Use '-' for stdout.
    trajectory: Trajectory object or str
        Attach trajectory object.  If *trajectory* is a string a
        PickleTrajectory will be constructed.  Use *None* for no
        trajectory.
    """
    def __init__(self, atoms, logfile, trajectory):
        self.atoms = atoms

        if rank != 0:
            logfile = None
        elif isinstance(logfile, str):
            if logfile == '-':
                logfile = sys.stdout
            else:
                logfile = open(logfile, 'a')
        self.logfile = logfile
        
        self.observers = []
        self.nsteps = 0

        if trajectory is not None:
            if isinstance(trajectory, str):
                trajectory = PickleTrajectory(trajectory, 'w', atoms)
            self.attach(trajectory)

    def get_number_of_steps(self):
        return self.nsteps

    def insert_observer(self, function, position=0, interval=1, 
                        *args, **kwargs):
        """Insert an observer."""
        if not callable(function):
            function = function.write
        self.observers.insert(position, (function, interval, args, kwargs))

    def attach(self, function, interval=1, *args, **kwargs):
        """Attach callback function.

        At every *interval* steps, call *function* with arguments
        *args* and keyword arguments *kwargs*."""

        if not hasattr(function, '__call__'):
            function = function.write
        self.observers.append((function, interval, args, kwargs))

    def call_observers(self):
        for function, interval, args, kwargs in self.observers:
            if self.nsteps % interval == 0:
                function(*args, **kwargs)


class Optimizer(Dynamics):
    """Base-class for all structure optimization classes."""
    def __init__(self, atoms, restart, logfile, trajectory):
        """Structure optimizer object.

        atoms: Atoms object
            The Atoms object to relax.
        restart: str
            Filename for restart file.  Default value is *None*.
        logfile: file object or str
            If *logfile* is a string, a file with that name will be opened.
            Use '-' for stdout.
        trajectory: Trajectory object or str
            Attach trajectory object.  If *trajectory* is a string a
            PickleTrajectory will be constructed.  Use *None* for no
            trajectory.
        """
        Dynamics.__init__(self, atoms, logfile, trajectory)
        self.restart = restart

        if restart is None or not isfile(restart):
            self.initialize()
        else:
            self.read()
            barrier()
    def initialize(self):
        pass

    def run(self, fmax=0.05, steps=100000000):
        """Run structure optimization algorithm.

        This method will return when the forces on all individual
        atoms are less than *fmax* or when the number of steps exceeds
        *steps*."""

        self.fmax = fmax
        step = 0
        while step < steps:
            f = self.atoms.get_forces()
            self.log(f)
            self.call_observers()
            if self.converged(f):
                return
            self.step(f)
            self.nsteps += 1
            step += 1

    def converged(self, forces=None):
        """Did the optimization converge?"""
        if forces is None:
            forces = self.atoms.get_forces()
        if hasattr(self.atoms, 'get_curvature'):
            return (forces**2).sum(axis=1).max() < self.fmax**2 and \
                   self.atoms.get_curvature() < 0.0
        return (forces**2).sum(axis=1).max() < self.fmax**2

    def log(self, forces):
        fmax = sqrt((forces**2).sum(axis=1).max())
        e = self.atoms.get_potential_energy()
        T = time.localtime()
        if self.logfile is not None:
            name = self.__class__.__name__
            self.logfile.write('%s: %3d  %02d:%02d:%02d %15.6f %12.4f\n' %
                               (name, self.nsteps, T[3], T[4], T[5], e, fmax))
            self.logfile.flush()
        
    def dump(self, data):
        if rank == 0 and self.restart is not None:
            pickle.dump(data, open(self.restart, 'wb'), protocol=2)

    def load(self):
        return pickle.load(open(self.restart))


class NDPoly:
    def __init__(self, ndims=1, order=3):
        """Multivariate polynomium.

        ndims: int
            Number of dimensions.
        order: int
            Order of polynomium."""
        
        if ndims == 0:
            exponents = [()]
        else:
            exponents = []
            for i in range(order + 1):
                E = NDPoly(ndims - 1, order - i).exponents
                exponents += [(i,) + tuple(e) for e in E]
        self.exponents = np.array(exponents)
        self.c = None
        
    def __call__(self, *x):
        """Evaluate polynomial at x."""
        return np.dot(self.c, (x**self.exponents).prod(1))

    def fit(self, x, y):
        """Fit polynomium at points in x to values in y."""
        A = (x**self.exponents[:, np.newaxis]).prod(2)
        self.c = np.linalg.solve(np.inner(A, A), np.dot(A, y))


def polyfit(x, y, order=3):
    """Fit polynomium at points in x to values in y.

    With D dimensions and N points, x must have shape (N, D) and y
    must have length N."""
    
    p = NDPoly(len(x[0]), order)
    p.fit(x, y)
    return p