This file is indexed.

/usr/share/pyshared/ase/parallel.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
import time
import atexit

import numpy as np


def paropen(name, mode='r', buffering=0):
    """MPI-safe version of open function.

    In read mode, the file is opened on all nodes.  In write and
    append mode, the file is opened on the master only, and /dev/null
    is opened on all other nodes.
    """
    if rank > 0 and mode[0] != 'r':
        name = '/dev/null'
    return open(name, mode, buffering)


def parprint(*args, **kwargs):
    """MPI-safe print - prints only from master.

    Tries to adopt python 3 behaviour.
    """
    if rank > 0:
        return
    defaults = {'end': '\n',
                'file': sys.stdout }
    for key in defaults:
        if not key in kwargs:
            kwargs[key] = defaults[key]

    for arg in args[:-1]:
        print >> kwargs['file'], arg,
    if len(args):
        last = args[-1]
    else:
        last = ''
    if kwargs['end'] == '\n':
        print >> kwargs['file'], last
    else:
        print >> kwargs['file'], last,


class DummyMPI:
    rank = 0
    size = 1
    def sum(self, a):
        if isinstance(a, np.ndarray) and a.ndim > 0:
            pass
        else:
            return a
    
    def barrier(self):
        pass

    def broadcast(self, a, rank):
        pass


class MPI4PY:
    def __init__(self):
        from mpi4py import MPI
        self.comm = MPI.COMM_WORLD
        self.rank = self.comm.rank
        self.size = self.comm.size

    def sum(self, a):
        return self.comm.allreduce(a)
    
    def barrier(self):
        self.comm.barrier()

    def broadcast(self, a, rank):
        a[:] = self.comm.bcast(a, rank)


# Check for special MPI-enabled Python interpreters:
if '_gpaw' in sys.modules:
    # http://wiki.fysik.dtu.dk/gpaw
    from gpaw.mpi import world
elif 'asapparallel3' in sys.modules:
    # http://wiki.fysik.dtu.dk/Asap
    # We cannot import asap3.mpi here, as that creates an import deadlock
    #from asap3.mpi import world
    import asapparallel3
    world = asapparallel3.Communicator()
elif 'Scientific_mpi' in sys.modules:
    from Scientific.MPI import world
elif 'mpi4py' in sys.modules:
    world = MPI4PY()
else:
    # This is a standard Python interpreter:
    world = DummyMPI()

rank = world.rank
size = world.size
barrier = world.barrier


def register_parallel_cleanup_function():
    """Call MPI_Abort if python crashes.

    This will terminate the processes on the other nodes."""
        
    if size == 1:
        return

    def cleanup(sys=sys, time=time, world=world):
        error = getattr(sys, 'last_type', None)
        if error:
            sys.stdout.flush()
            sys.stderr.write(('ASE CLEANUP (node %d): %s occurred.  ' +
                              'Calling MPI_Abort!\n') % (world.rank, error))
            sys.stderr.flush()
            # Give other nodes a moment to crash by themselves (perhaps
            # producing helpful error messages):
            time.sleep(3)
            world.abort(42)

    atexit.register(cleanup)

def distribute_cpus(parsize_calculator, comm):
    """Distribute cpus to tasks and calculators"""
    
    assert parsize_calculator <= comm.size
    assert comm.size % parsize_calculator == 0

    tasks_rank = comm.rank // parsize_calculator

    r0 = tasks_rank * parsize_calculator
    ranks = np.arange(r0, r0 + parsize_calculator)
    calc_comm = comm.new_communicator(ranks)
#    print 'comm.rank, ranks=', comm.rank, ranks

    tasks_comm = np.arange(0, comm.size, parsize_calculator)

    return calc_comm, tasks_comm, tasks_rank