This file is indexed.

/usr/share/pyshared/ase/structure.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""Atomic structure.

This mudule contains helper functions for setting up nanotubes and
graphene nanoribbons."""

import warnings
from math import sqrt

import numpy as np

from ase.atoms import Atoms, string2symbols
from ase.data import covalent_radii
from ase.utils import gcd


def nanotube(n, m, length=1, bond=1.42, symbol='C', verbose=False):
    if n < m:
        m, n = n, m
        sign = -1
    else:
        sign = 1

    nk = 6000
    sq3 = sqrt(3.0)
    a = sq3 * bond
    l2 = n * n + m * m + n * m
    l = sqrt(l2)
    dt = a * l / np.pi

    nd = gcd(n ,m)
    if (n - m) % (3 * nd ) == 0:
        ndr = 3 * nd
    else:
        ndr = nd

    nr = (2 * m + n) / ndr
    ns = -(2 * n + m) / ndr
    nt2 = 3 * l2 / ndr / ndr
    nt = np.floor(sqrt(nt2))
    nn = 2 * l2 / ndr

    ichk = 0
    if nr == 0:
        n60 = 1
    else:
        n60 = nr * 4

    absn = abs(n60)
    nnp = []
    nnq = []
    for i in range(-absn, absn + 1):
        for j in range(-absn, absn + 1):
            j2 = nr * j - ns * i
            if j2 == 1:
                j1 = m * i - n * j
                if j1 > 0 and j1 < nn:
                    ichk += 1
                    nnp.append(i)
                    nnq.append(j)

    if ichk == 0:
        raise RuntimeError('not found p, q strange!!')
    if ichk >= 2:
        raise RuntimeError('more than 1 pair p, q strange!!')

    nnnp = nnp[0]
    nnnq = nnq[0]

    if verbose:
        print 'the symmetry vector is', nnnp, nnnq

    lp = nnnp * nnnp + nnnq * nnnq + nnnp * nnnq
    r = a * sqrt(lp)
    c = a * l
    t = sq3 * c / ndr

    if 2 * nn > nk:
        raise RuntimeError('parameter nk is too small!')

    rs = c / (2.0 * np.pi)

    if verbose:
        print 'radius=', rs, t

    q1 = np.arctan((sq3 * m) / (2 * n + m))
    q2 = np.arctan((sq3 * nnnq) / (2 * nnnp + nnnq))
    q3 = q1 - q2

    q4 = 2.0 * np.pi / nn
    q5 = bond * np.cos((np.pi / 6.0) - q1) / c * 2.0 * np.pi

    h1 = abs(t) / abs(np.sin(q3))
    h2 = bond * np.sin((np.pi / 6.0) - q1)

    ii = 0
    x, y, z = [], [], []
    for i in range(nn):
        x1, y1, z1 = 0, 0, 0

        k = np.floor(i * abs(r) / h1)
        x1 = rs * np.cos(i * q4)
        y1 = rs * np.sin(i * q4)
        z1 = (i * abs(r) - k * h1) * np.sin(q3)
        kk2 = abs(np.floor((z1 + 0.0001) / t))
        if z1 >= t - 0.0001:
            z1 -= t * kk2
        elif z1 < 0:
            z1 += t * kk2
        ii += 1

        x.append(x1)
        y.append(y1)
        z.append(z1)
        z3 = (i * abs(r) - k * h1) * np.sin(q3) - h2
        ii += 1

        if z3 >= 0 and z3 < t:
            x2 = rs * np.cos(i * q4 + q5)
            y2 = rs * np.sin(i * q4 + q5)
            z2 = (i * abs(r) - k * h1) * np.sin(q3) - h2
            x.append(x2)
            y.append(y2)
            z.append(z2)
        else:
            x2 = rs * np.cos(i * q4 + q5)
            y2 = rs * np.sin(i * q4 + q5)
            z2 = (i * abs(r) - (k + 1) * h1) * np.sin(q3) - h2
            kk = abs(np.floor(z2 / t))
            if z2 >= t - 0.0001:
                z2 -= t * kk
            elif z2 < 0:
                z2 += t * kk
            x.append(x2)
            y.append(y2)
            z.append(z2)

    ntotal = 2 * nn
    X = []
    for i in range(ntotal):
        X.append([x[i], y[i], sign * z[i]])

    if length > 1:
        xx = X[:]
        for mnp in range(2, length + 1):
            for i in range(len(xx)):
                X.append(xx[i][:2] + [xx[i][2] + (mnp - 1) * t])

    TransVec = t
    NumAtom = ntotal * length
    Diameter = rs * 2
    ChiralAngle = np.arctan((sq3 * n) / (2 * m + n)) / (np.pi * 180)

    cell = [Diameter * 2, Diameter * 2, length * t]
    atoms = Atoms(symbol + str(NumAtom), positions=X, cell=cell,
                  pbc=[False, False, True])
    atoms.center()
    if verbose:
        print 'translation vector =', TransVec
        print 'diameter = ', Diameter
        print 'chiral angle = ', ChiralAngle
    return atoms

def graphene_nanoribbon(n, m, type='zigzag', saturated=False, C_H=1.09,
                        C_C=1.42, vacuum=2.5, magnetic=None, initial_mag=1.12,
                        sheet=False, main_element='C', saturate_element='H',
                        vacc=None):
    """Create a graphene nanoribbon.

    Creates a graphene nanoribbon in the x-z plane, with the nanoribbon
    running along the z axis.

    Parameters:

    n: The width of the nanoribbon

    m: The length of the nanoribbon.

    type ('zigzag'): The orientation of the ribbon.  Must be either 'zigzag'
    or 'armchair'.

    saturated (Falsi):  If true, hydrogen atoms are placed along the edge.

    C_H: Carbon-hydrogen bond length.  Default: 1.09 Angstrom

    C_C: Carbon-carbon bond length.  Default: 1.42 Angstrom.

    vacuum:  Amount of vacuum added to both sides.  Default 2.5 Angstrom.

    magnetic:  Make the edges magnetic.

    initial_mag: Magnitude of magnetic moment if magnetic=True.

    sheet:  If true, make an infinite sheet instead of a ribbon.
    """
    #This function creates the coordinates for a graphene nanoribbon,
    #n is width, m is length

    if vacc is not None:
        warnings.warn('Use vacuum=%f' % (0.5 * vacc))
        vacuum = 0.5 * vacc

    assert vacuum > 0
    b = sqrt(3) * C_C / 4
    arm_unit = Atoms(main_element+'4', pbc=(1,0,1),
                     cell = [4 * b,  2 * vacuum,  3 * C_C])
    arm_unit.positions = [[0, 0, 0],
                          [b * 2, 0, C_C / 2.],
                          [b * 2, 0, 3 * C_C / 2.],
                          [0, 0, 2 * C_C]]
    zz_unit = Atoms(main_element+'2', pbc=(1,0,1),
                    cell = [3 * C_C /2., 2 * vacuum, b * 4])
    zz_unit.positions = [[0, 0, 0],
                         [C_C / 2., 0, b * 2]]
    atoms = Atoms()
    tol = 1e-4
    if sheet:
        vacuum2 = 0.0
    else:
        vacuum2 = vacuum
    if type == 'zigzag':
        edge_index0 = np.arange(m) * 2 + 1
        edge_index1 = (n - 1) * m * 2 + np.arange(m) * 2
        if magnetic:
            mms = np.zeros(m * n * 2)
            for i in edge_index0:
                mms[i] = initial_mag
            for i in edge_index1:
                mms[i] = -initial_mag

        for i in range(n):
            layer = zz_unit.repeat((1, 1, m))
            layer.positions[:, 0] -= 3 * C_C / 2 * i
            if i % 2 == 1:
                layer.positions[:, 2] += 2 * b
                layer[-1].position[2] -= b * 4 * m
            atoms += layer
        if magnetic:
            atoms.set_initial_magnetic_moments(mms)
        if saturated:
            H_atoms0 = Atoms(saturate_element + str(m))
            H_atoms0.positions = atoms[edge_index0].positions
            H_atoms0.positions[:, 0] += C_H
            H_atoms1 = Atoms(saturate_element + str(m))
            H_atoms1.positions = atoms[edge_index1].positions
            H_atoms1.positions[:, 0] -= C_H
            atoms += H_atoms0 + H_atoms1
        atoms.cell = [n * 3 * C_C / 2 + 2 * vacuum2, 2 * vacuum, m * 4 * b]

    elif type == 'armchair':
        for i in range(n):
            layer = arm_unit.repeat((1, 1, m))
            layer.positions[:, 0] -= 4 * b * i
            atoms += layer
        atoms.cell = [b * 4 * n + 2 * vacuum2, 2 * vacuum, 3 * C_C * m]

    atoms.center()
    atoms.set_pbc([sheet, False, True])
    return atoms

def molecule(name, data=None, **kwargs):
    """Create formula base on data. If data is None assume G2 set.
    kwargs currently not used.  """
    if data is None:
        from ase.data.g2 import data
    if name not in data.keys():
        raise NotImplementedError('%s not in data.' % (name))
    args = data[name].copy()
    # accept only the following Atoms constructor arguments
    # XXX: should we accept all Atoms arguments?
    for k in args.keys():
        if k not in [
            'symbols', 'positions', 'numbers',
            'tags', 'masses',
            'magmoms', 'charges',
            'info',
            ]:
            args.pop(k)
    # kwargs overwrites data
    args.update(kwargs)
    return Atoms(**args)

def bulk(name, crystalstructure, a=None, c=None, covera=None,
         orthorhombic=False, cubic=False):
    """Helper function for creating bulk systems.

    name: str
        Chemical symbol or symbols as in 'MgO' or 'NaCl'.
    crystalstructure: str
        Must be one of sc, fcc, bcc, hcp, diamond, zincblende or
        rocksalt.
    a: float
        Lattice constant.
    c: float
        Lattice constant.
    covera: float
        c/a raitio used for hcp.  Defaults to ideal ratio.
    orthorhombic: bool
        Construct orthorhombic unit cell instead of primitive cell
        which is the default.
    cubic: bool
        Construct cubic unit cell.
    """

    #warnings.warn('This function is deprecated.  Use the ' +
    #              'ase.lattice.bulk.bulk() function instead.')

    if a is not None:
        a = float(a)
    if c is not None:
        c = float(c)

    if covera is not None and  c is not None:
        raise ValueError("Don't specify both c and c/a!")

    if covera is None and c is None:
        covera = sqrt(8.0 / 3.0)

    if a is None:
        a = estimate_lattice_constant(name, crystalstructure, covera)

    if covera is None and c is not None:
        covera = c / a

    x = crystalstructure.lower()

    if orthorhombic and x != 'sc':
        return _orthorhombic_bulk(name, x, a, covera)

    if cubic and x == 'bcc':
        return _orthorhombic_bulk(name, x, a, covera)

    if cubic and x != 'sc':
        return _cubic_bulk(name, x, a)

    if x == 'sc':
        atoms = Atoms(name, cell=(a, a, a), pbc=True)
    elif x == 'fcc':
        b = a / 2
        atoms = Atoms(name, cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True)
    elif x == 'bcc':
        b = a / 2
        atoms = Atoms(name, cell=[(-b, b, b), (b, -b, b), (b, b, -b)],
                      pbc=True)
    elif x == 'hcp':
        atoms = Atoms(2 * name,
                      scaled_positions=[(0, 0, 0),
                                        (1.0 / 3.0, 1.0 / 3.0, 0.5)],
                      cell=[(a, 0, 0),
                            (a / 2, a * sqrt(3) / 2, 0),
                            (0, 0, covera * a)],
                      pbc=True)
    elif x == 'diamond':
        atoms = bulk(2 * name, 'zincblende', a)
    elif x == 'zincblende':
        s1, s2 = string2symbols(name)
        atoms = bulk(s1, 'fcc', a) + bulk(s2, 'fcc', a)
        atoms.positions[1] += a / 4
    elif x == 'rocksalt':
        s1, s2 = string2symbols(name)
        atoms = bulk(s1, 'fcc', a) + bulk(s2, 'fcc', a)
        atoms.positions[1, 0] += a / 2
    else:
        raise ValueError('Unknown crystal structure: ' + crystalstructure)

    return atoms

def estimate_lattice_constant(name, crystalstructure, covera):
    atoms = bulk(name, crystalstructure, 1.0, covera)
    v0 = atoms.get_volume()
    v = 0.0
    for Z in atoms.get_atomic_numbers():
        r = covalent_radii[Z]
        v += 4 * np.pi / 3 * r**3 * 1.5
    return (v / v0)**(1.0 / 3)

def _orthorhombic_bulk(name, x, a, covera=None):
    if x == 'fcc':
        b = a / sqrt(2)
        atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)])
    elif x == 'bcc':
        atoms = Atoms(2 * name, cell=(a, a, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)])
    elif x == 'hcp':
        atoms = Atoms(4 * name,
                      cell=(a, a * sqrt(3), covera * a),
                      scaled_positions=[(0, 0, 0),
                                        (0.5, 0.5, 0),
                                        (0.5, 1.0 / 6.0, 0.5),
                                        (0, 2.0 / 3.0, 0.5)],
                      pbc=True)
    elif x == 'diamond':
        atoms = _orthorhombic_bulk(2 * name, 'zincblende', a)
    elif x == 'zincblende':
        s1, s2 = string2symbols(name)
        b = a / sqrt(2)
        atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.5, 0, 0.25),
                                        (0.5, 0.5, 0.5), (0, 0.5, 0.75)])
    elif x == 'rocksalt':
        s1, s2 = string2symbols(name)
        b = a / sqrt(2)
        atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.5, 0.5, 0),
                                        (0.5, 0.5, 0.5), (0, 0, 0.5)])
    else:
        raise RuntimeError

    return atoms

def _cubic_bulk(name, x, a):
    if x == 'fcc':
        atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0, 0.5, 0.5),
                                        (0.5, 0, 0.5), (0.5, 0.5, 0)])
    elif x == 'diamond':
        atoms = _cubic_bulk(2 * name, 'zincblende', a)
    elif x == 'zincblende':
        atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.25, 0.25, 0.25),
                                        (0, 0.5, 0.5), (0.25, 0.75, 0.75),
                                        (0.5, 0, 0.5), (0.75, 0.25, 0.75),
                                        (0.5, 0.5, 0), (0.75, 0.75, 0.25)])
    elif x == 'rocksalt':
        atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
                      scaled_positions=[(0, 0, 0), (0.5, 0, 0),
                                        (0, 0.5, 0.5), (0.5, 0.5, 0.5),
                                        (0.5, 0, 0.5), (0, 0, 0.5),
                                        (0.5, 0.5, 0), (0, 0.5, 0)])
    else:
        raise RuntimeError

    return atoms