/usr/share/pyshared/ase/thermochemistry.py is in python-ase 3.6.0.2515-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | #!/usr/bin/env python
"""Modules for calculating thermochemical information from computational
outputs."""
import os
import sys
import numpy as np
from ase import units
def rotationalinertia(atoms):
"""Calculates the three principle moments of inertia for an ASE atoms
object. This uses the atomic masses from ASE, which (if not explicitly
specified by the user) gives an inexact approximation of an isotopically
averaged result. Units are in amu*angstroms**2."""
# Calculate the center of mass.
xcm, ycm, zcm = atoms.get_center_of_mass()
masses = atoms.get_masses()
# Calculate moments of inertia in the current frame of reference.
Ixx = 0.
Iyy = 0.
Izz = 0.
Ixy = 0.
Ixz = 0.
Iyz = 0.
for index, atom in enumerate(atoms):
m = masses[index]
x = atom.x - xcm
y = atom.y - ycm
z = atom.z - zcm
Ixx += m * (y**2. + z**2.)
Iyy += m * (x**2. + z**2.)
Izz += m * (x**2. + y**2.)
Ixy += m * x * y
Ixz += m * x * z
Iyz += m * y * z
# Create the inertia tensor in the current frame of reference.
I_ = np.matrix([[ Ixx, -Ixy, -Ixz],
[-Ixy, Iyy, -Iyz],
[-Ixz, -Iyz, Izz]])
# Find the eigenvalues, which are the principle moments of inertia.
I = np.linalg.eigvals(I_)
return I
class ThermoChem:
"""Base class containing common methods used in thermochemistry
calculations."""
def get_ZPE_correction(self):
"""Returns the zero-point vibrational energy correction in eV."""
zpe = 0.
for energy in self.vib_energies:
zpe += 0.5 * energy
return zpe
def _vibrational_energy_contribution(self, temperature):
"""Calculates the change in internal energy due to vibrations from
0K to the specified temperature for a set of vibrations given in
eV and a temperature given in Kelvin. Returns the energy change
in eV."""
kT = units.kB * temperature
dU = 0.
for energy in self.vib_energies:
dU += energy / (np.exp(energy/kT) - 1.)
return dU
def _vibrational_entropy_contribution(self, temperature):
"""Calculates the entropy due to vibrations for a set of vibrations
given in eV and a temperature given in Kelvin. Returns the entropy
in eV/K."""
kT = units.kB * temperature
S_v = 0.
for energy in self.vib_energies:
x = energy / kT
S_v += x / (np.exp(x)-1.) - np.log(1-np.exp(-x))
S_v *= units.kB
return S_v
def _vprint(self, text):
"""Print output if verbose flag True."""
if self.verbose:
sys.stdout.write(text + os.linesep)
class HarmonicThermo(ThermoChem):
"""Class for calculating thermodynamic properties in the approximation
that all degrees of freedom are treated harmonically. Often used for
adsorbates.
Inputs:
vib_energies : list
a list of the harmonic energies of the adsorbate (e.g., from
ase.vibrations.Vibrations.get_energies). The number of
energies should match the number of degrees of freedom of the
adsorbate; i.e., 3*n, where n is the number of atoms. Note that
this class does not check that the user has supplied the correct
number of energies. Units of energies are eV.
electronicenergy : float
the electronic energy in eV
(If the electronicenergy is unspecified, then the methods of this
class can be interpreted as the energy corrections.)
"""
def __init__(self, vib_energies, electronicenergy=None):
self.vib_energies = vib_energies
# Check for imaginary frequencies.
if sum(np.iscomplex(self.vib_energies)):
raise ValueError('Imaginary vibrational energies are present.')
else:
self.vib_energies = np.real(self.vib_energies) # clear +0.j
if electronicenergy:
self.electronicenergy = electronicenergy
else:
self.electronicenergy = 0.
def get_internal_energy(self, temperature, verbose=True):
"""Returns the internal energy, in eV, in the harmonic approximation
at a specified temperature (K)."""
self.verbose = verbose
write = self._vprint
fmt = '%-15s%13.3f eV'
write('Internal energy components at T = %.2f K:' % temperature)
write('='*31)
U = 0.
write(fmt % ('E_elec', self.electronicenergy))
U += self.electronicenergy
zpe = self.get_ZPE_correction()
write(fmt % ('E_ZPE', zpe))
U += zpe
dU_v = self._vibrational_energy_contribution(temperature)
write(fmt % ('Cv_harm (0->T)', dU_v))
U += dU_v
write('-'*31)
write(fmt % ('U', U))
write('='*31)
return U
def get_entropy(self, temperature, verbose=True):
"""Returns the entropy, in eV/K, in the harmonic approximation
at a specified temperature (K)."""
self.verbose = verbose
write = self._vprint
fmt = '%-15s%13.7f eV/K%13.3f eV'
write('Entropy components at T = %.2f K:' % temperature)
write('='*49)
write('%15s%13s %13s'%('', 'S', 'T*S'))
S = 0.
S_v = self._vibrational_entropy_contribution(temperature)
write(fmt%('S_harm', S_v, S_v*temperature))
S += S_v
write('-'*49)
write(fmt%('S', S, S*temperature))
write('='*49)
return S
def get_free_energy(self, temperature, verbose=True):
"""Returns the free energy, in eV, in the harmonic approximation
at a specified temperature (K)."""
self.verbose = True
write = self._vprint
U = self.get_internal_energy(temperature, verbose=verbose)
write('')
S = self.get_entropy(temperature, verbose=verbose)
G = U - temperature * S
write('')
write('Free energy components at T = %.2f K:' % temperature)
write('='*23)
fmt = '%5s%15.3f eV'
write(fmt % ('U', U))
write(fmt % ('-T*S', -temperature * S))
write('-'*23)
write(fmt % ('G', G))
write('='*23)
return G
class IdealGasThermo(ThermoChem):
"""Class for calculating thermodynamic properties of a molecule
based on statistical mechanical treatments in the ideal gas
approximation.
Inputs for enthalpy calculations:
vib_energies : list
a list of the vibrational energies of the molecule (e.g., from
ase.vibrations.Vibrations.get_energies). The number of vibrations
used is automatically calculated by the geometry and the number of
atoms. If more are specified than are needed, then the lowest
numbered vibrations are neglected. If either atoms or natoms is
unspecified, then uses the entire list. Units are eV.
geometry : 'monatomic', 'linear', or 'nonlinear'
geometry of the molecule
electronicenergy : float
the electronic energy in eV
(If electronicenergy is unspecified, then the methods of this
class can be interpreted as the enthalpy and free energy
corrections.)
natoms : integer
the number of atoms, used along with 'geometry' to determine how
many vibrations to use. (Not needed if an atoms object is supplied
in 'atoms' or if the user desires the entire list of vibrations
to be used.)
Extra inputs needed for for entropy / free energy calculations:
atoms : an ASE atoms object
used to calculate rotational moments of inertia and molecular mass
symmetrynumber : integer
symmetry number of the molecule. See, for example, Table 10.1 and
Appendix B of C. Cramer "Essentials of Computational Chemistry",
2nd Ed.
spin : float
the total electronic spin. (0 for molecules in which all electrons
are paired, 0.5 for a free radical with a single unpaired electron,
1.0 for a triplet with two unpaired electrons, such as O_2.)
"""
def __init__(self, vib_energies, geometry, electronicenergy=None,
atoms=None, symmetrynumber=None, spin=None, natoms=None):
if electronicenergy == None:
self.electronicenergy = 0.
else:
self.electronicenergy = electronicenergy
self.geometry = geometry
self.atoms = atoms
self.sigma = symmetrynumber
self.spin = spin
if natoms == None:
if atoms:
natoms = len(atoms)
# Cut the vibrations to those needed from the geometry.
if natoms:
if geometry == 'nonlinear':
self.vib_energies = vib_energies[-(3*natoms-6):]
elif geometry == 'linear':
self.vib_energies = vib_energies[-(3*natoms-5):]
elif geometry == 'monatomic':
self.vib_energies = []
else:
self.vib_energies = vib_energies
# Make sure no imaginary frequencies remain.
if sum(np.iscomplex(self.vib_energies)):
raise ValueError('Imaginary frequencies are present.')
else:
self.vib_energies = np.real(self.vib_energies) # clear +0.j
self.referencepressure = 101325. # Pa
def get_enthalpy(self, temperature, verbose=True):
"""Returns the enthalpy, in eV, in the ideal gas approximation
at a specified temperature (K)."""
self.verbose = verbose
write = self._vprint
fmt = '%-15s%13.3f eV'
write('Enthalpy components at T = %.2f K:' % temperature)
write('='*31)
H = 0.
write(fmt % ('E_elec', self.electronicenergy))
H += self.electronicenergy
zpe = self.get_ZPE_correction()
write(fmt % ('E_ZPE', zpe))
H += zpe
Cv_t = 3./2. * units.kB # translational heat capacity (3-d gas)
write(fmt % ('Cv_trans (0->T)', Cv_t * temperature))
H += Cv_t * temperature
if self.geometry == 'nonlinear': # rotational heat capacity
Cv_r = 3./2.*units.kB
elif self.geometry == 'linear':
Cv_r = units.kB
elif self.geometry == 'monatomic':
Cv_r = 0.
write(fmt % ('Cv_rot (0->T)', Cv_r * temperature))
H += Cv_r*temperature
dH_v = self._vibrational_energy_contribution(temperature)
write(fmt % ('Cv_vib (0->T)', dH_v))
H += dH_v
Cp_corr = units.kB * temperature
write(fmt % ('(C_v -> C_p)', Cp_corr))
H += Cp_corr
write('-'*31)
write(fmt % ('H', H))
write('='*31)
return H
def get_entropy(self, temperature, pressure, verbose=True):
"""Returns the entropy, in eV/K, in the ideal gas approximation
at a specified temperature (K) and pressure (Pa)."""
if self.atoms == None or self.sigma == None or self.spin == None:
raise RuntimeError('atoms, symmetrynumber, and spin must be '
'specified for entropy and free energy '
'calculations.')
self.verbose = verbose
write = self._vprint
fmt = '%-15s%13.7f eV/K%13.3f eV'
write('Entropy components at T = %.2f K and P = %.1f Pa:' %
(temperature, pressure))
write('=' * 49)
write('%15s%13s %13s' % ('', 'S', 'T*S'))
S = 0.0
# Translational entropy (term inside the log is in SI units).
mass = sum(self.atoms.get_masses()) * units._amu # kg/molecule
S_t = (2 * np.pi * mass * units._k *
temperature / units._hplanck**2)**(3.0 / 2)
S_t *= units._k * temperature / self.referencepressure
S_t = units.kB * (np.log(S_t) + 5.0 / 2.0)
write(fmt % ('S_trans (1 atm)', S_t, S_t * temperature))
S += S_t
# Rotational entropy (term inside the log is in SI units).
if self.geometry == 'monatomic':
S_r = 0.0
elif self.geometry == 'nonlinear':
inertias = (rotationalinertia(self.atoms) * units._amu /
(10.0**10)**2) # kg m^2
S_r = np.sqrt(np.pi * np.product(inertias)) / self.sigma
S_r *= (8.0 * np.pi**2 * units._k * temperature /
units._hplanck**2)**(3.0 / 2.0)
S_r = units.kB * (np.log(S_r) + 3.0 / 2.0)
elif self.geometry == 'linear':
inertias = (rotationalinertia(self.atoms) * units._amu /
(10.0**10)**2) # kg m^2
inertia = max(inertias) # should be two identical and one zero
S_r = (8 * np.pi**2 * inertia * units._k * temperature /
self.sigma / units._hplanck**2)
S_r = units.kB * (np.log(S_r) + 1.)
write(fmt % ('S_rot', S_r, S_r * temperature))
S += S_r
# Electronic entropy.
S_e = units.kB * np.log(2 * self.spin + 1)
write(fmt % ('S_elec', S_e, S_e * temperature))
S += S_e
# Vibrational entropy.
S_v = self._vibrational_entropy_contribution(temperature)
write(fmt % ('S_vib', S_v, S_v * temperature))
S += S_v
# Pressure correction to translational entropy.
S_p = - units.kB * np.log(pressure / self.referencepressure)
write(fmt % ('S (1 atm -> P)', S_p, S_p * temperature))
S += S_p
write('-' * 49)
write(fmt % ('S', S, S * temperature))
write('=' * 49)
return S
def get_free_energy(self, temperature, pressure, verbose=True):
"""Returns the free energy, in eV, in the ideal gas approximation
at a specified temperature (K) and pressure (Pa)."""
self.verbose = verbose
write = self._vprint
H = self.get_enthalpy(temperature, verbose=verbose)
write('')
S = self.get_entropy(temperature, pressure, verbose=verbose)
G = H - temperature * S
write('')
write('Free energy components at T = %.2f K and P = %.1f Pa:' %
(temperature, pressure))
write('=' * 23)
fmt = '%5s%15.3f eV'
write(fmt % ('H', H))
write(fmt % ('-T*S', -temperature * S))
write('-' * 23)
write(fmt % ('G', G))
write('=' * 23)
return G
|