This file is indexed.

/usr/share/pyshared/ase/utils/geometry.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# Copyright (C) 2010, Jesper Friis
# (see accompanying license files for details).

"""Utility tools for convenient creation of slabs and interfaces of
different orientations."""

import numpy as np


def get_layers(atoms, miller, tolerance=0.001):
    """Returns two arrays describing which layer each atom belongs
    to and the distance between the layers and origo. 

    Parameters:

    miller: 3 integers
        The Miller indices of the planes. Actually, any direction
        in reciprocal space works, so if a and b are two float
        vectors spanning an atomic plane, you can get all layers
        parallel to this with miller=np.cross(a,b).
    tolerance: float
        The maximum distance in Angstrom along the plane normal for
        counting two atoms as belonging to the same plane.

    Returns:

    tags: array of integres
        Array of layer indices for each atom.
    levels: array of floats
        Array of distances in Angstrom from each layer to origo.

    Example:

    >>> import numpy as np
    >>> from ase.lattice.spacegroup import crystal
    >>> atoms = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
    >>> np.round(atoms.positions, decimals=5)
    array([[ 0.   ,  0.   ,  0.   ],
           [ 0.   ,  2.025,  2.025],
           [ 2.025,  0.   ,  2.025],
           [ 2.025,  2.025,  0.   ]])
    >>> get_layers(atoms, (0,0,1))
    (array([0, 1, 1, 0]), array([ 0.   ,  2.025]))
    """
    miller = np.asarray(miller)

    metric = np.dot(atoms.cell, atoms.cell.T)
    c = np.linalg.solve(metric.T, miller.T).T
    miller_norm = np.sqrt(np.dot(c, miller))
    d = np.dot(atoms.get_scaled_positions(), miller)/miller_norm

    keys = np.argsort(d)
    ikeys = np.argsort(keys)
    mask = np.concatenate(([True], np.diff(d[keys]) > tolerance))
    tags = np.cumsum(mask)[ikeys]
    if tags.min() == 1:
        tags -= 1

    levels = d[keys][mask]
    return tags, levels




def cut(atoms, a=(1, 0, 0), b=(0, 1, 0), c=None, clength=None, 
        origo=(0, 0, 0), nlayers=None, extend=1.0, tolerance=0.01, 
        maxatoms=None):
    """Cuts out a cell defined by *a*, *b*, *c* and *origo* from a
    sufficiently repeated copy of *atoms*.

    Typically, this function is used to create slabs of different
    sizes and orientations. The vectors *a*, *b* and *c* are in scaled
    coordinates and defines the returned cell and should normally be
    integer-valued in order to end up with a periodic
    structure. However, for systems with sub-translations, like fcc,
    integer multiples of 1/2 or 1/3 might also make sence for some
    directions (and will be treated correctly).

    Parameters:
    
    atoms: Atoms instance
        This should correspond to a repeatable unit cell.
    a: int | 3 floats
        The a-vector in scaled coordinates of the cell to cut out. If
        integer, the a-vector will be the scaled vector from *origo* to the
        atom with index *a*.
    b: int | 3 floats
        The b-vector in scaled coordinates of the cell to cut out. If
        integer, the b-vector will be the scaled vector from *origo* to the
        atom with index *b*.
    c: None | int | 3 floats
        The c-vector in scaled coordinates of the cell to cut out. 
        if integer, the c-vector will be the scaled vector from *origo* to 
        the atom with index *c*. 
        If *None* it will be along cross(a, b) converted to real space
        and normalised with the cube root of the volume. Note that this
        in general is not perpendicular to a and b for non-cubic
        systems. For cubic systems however, this is redused to 
        c = cross(a, b).
    clength: None | float
        If not None, the length of the c-vector will be fixed to
        *clength* Angstroms. Should not be used together with
        *nlayers*.
    origo: int | 3 floats
        Position of origo of the new cell in scaled coordinates. If
        integer, the position of the atom with index *origo* is used.
    nlayers: None | int
        If *nlayers* is not *None*, the returned cell will have
        *nlayers* atomic layers in the c-direction.
    extend: 1 or 3 floats
        The *extend* argument scales the effective cell in which atoms
        will be included. It must either be three floats or a single
        float scaling all 3 directions.  By setting to a value just
        above one, e.g. 1.05, it is possible to all the corner and
        edge atoms in the returned cell.  This will of cause make the
        returned cell non-repeatable, but is very usefull for
        visualisation.
    tolerance: float
        Determines what is defined as a plane.  All atoms within
        *tolerance* Angstroms from a given plane will be considered to
        belong to that plane.
    maxatoms: None | int
        This option is used to auto-tune *tolerance* when *nlayers* is
        given for high zone axis systems.  For high zone axis one
        needs to reduce *tolerance* in order to distinguise the atomic
        planes, resulting in the more atoms will be added and
        eventually MemoryError.  A too small *tolerance*, on the other
        hand, might result in inproper splitting of atomic planes and
        that too few layers are returned.  If *maxatoms* is not None,
        *tolerance* will automatically be gradually reduced until
        *nlayers* atomic layers is obtained, when the number of atoms
        exceeds *maxatoms*.

    Example:

    >>> import ase
    >>> from ase.lattice.spacegroup import crystal
    >>>
    # Create an aluminium (111) slab with three layers
    #
    # First an unit cell of Al
    >>> a = 4.05
    >>> aluminium = crystal('Al', [(0,0,0)], spacegroup=225,
    ...                     cellpar=[a, a, a, 90, 90, 90])
    >>>
    # Then cut out the slab
    >>> al111 = cut(aluminium, (1,-1,0), (0,1,-1), nlayers=3)
    >>>
    # Visualisation of the skutterudite unit cell 
    #
    # Again, create a skutterudite unit cell
    >>> a = 9.04
    >>> skutterudite = crystal(
    ...     ('Co', 'Sb'), 
    ...     basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)], 
    ...     spacegroup=204, 
    ...     cellpar=[a, a, a, 90, 90, 90])
    >>>
    # Then use *origo* to put 'Co' at the corners and *extend* to
    # include all corner and edge atoms.
    >>> s = cut(skutterudite, origo=(0.25, 0.25, 0.25), extend=1.01)
    >>> ase.view(s)  # doctest: +SKIP
    """
    atoms = atoms.copy()
    cell = atoms.cell

    if isinstance(origo, int):
        origo = atoms.get_scaled_positions()[origo]
    origo = np.array(origo, dtype=float)

    scaled = (atoms.get_scaled_positions() - origo)%1.0
    scaled %= 1.0 # needed to ensure that all numbers are *less* than one
    atoms.set_scaled_positions(scaled)

    if isinstance(a, int):
        a = scaled[a] - origo
    if isinstance(b, int):
        b = scaled[b] - origo
    if isinstance(c, int):
        c = scaled[c] - origo

    a = np.array(a, dtype=float)
    b = np.array(b, dtype=float)
    if c is None:
        metric = np.dot(cell, cell.T)
        vol = np.sqrt(np.linalg.det(metric))
        h = np.cross(a, b) 
        H = np.linalg.solve(metric.T, h.T)
        c = vol*H/vol**(1./3.)
    c = np.array(c, dtype=float)

    if nlayers:
        # Recursive increase the length of c until we have at least
        # *nlayers* atomic layers parallell to the a-b plane
        while True:
            at = cut(atoms, a, b, c, origo=origo, extend=extend, 
                        tolerance=tolerance)
            scaled = at.get_scaled_positions()
            d = scaled[:,2]
            keys = np.argsort(d)
            ikeys = np.argsort(keys)
            tol = tolerance
            while True:
                mask = np.concatenate(([True], np.diff(d[keys]) > tol))
                tags = np.cumsum(mask)[ikeys] - 1
                levels = d[keys][mask]
                if (maxatoms is None or len(at) < maxatoms or 
                    len(levels) > nlayers): 
                    break
                tol *= 0.9
            if len(levels) > nlayers: 
                break
            c *= 2

        at.cell[2] *= levels[nlayers]
        return at[tags < nlayers]

    newcell = np.dot(np.array([a, b, c]), cell)
    if nlayers is None and clength is not None:
        newcell[2,:] *= clength/np.linalg.norm(newcell[2])

    # Create a new atoms object, repeated and translated such that
    # it completely covers the new cell
    scorners_newcell = np.array([[0., 0., 0.], [0., 0., 1.], 
                                 [0., 1., 0.], [0., 1., 1.], 
                                 [1., 0., 0.], [1., 0., 1.], 
                                 [1., 1., 0.], [1., 1., 1.]])
    corners = np.dot(scorners_newcell, newcell*extend)
    scorners = np.linalg.solve(cell.T, corners.T).T
    rep = np.ceil(scorners.ptp(axis=0)).astype('int') + 1
    trans = np.dot(np.floor(scorners.min(axis=0)), cell)
    atoms = atoms.repeat(rep)
    atoms.translate(trans)
    atoms.set_cell(newcell)

    # Mask out atoms outside new cell
    stol = 0.1*tolerance  # scaled tolerance, XXX
    maskcell = atoms.cell*extend
    sp = np.linalg.solve(maskcell.T, (atoms.positions).T).T
    mask = np.all(np.logical_and(-stol <= sp, sp < 1-stol), axis=1)
    atoms = atoms[mask]
    return atoms


class IncompatibleCellError(ValueError):
    """Exception raised if stacking fails due to incompatible cells
    between *atoms1* and *atoms2*."""
    pass


def stack(atoms1, atoms2, axis=2, cell=None, fix=0.5,  
          maxstrain=0.5, distance=None, reorder=False):
    """Return a new Atoms instance with *atoms2* stacked on top of
    *atoms1* along the given axis. Periodicity in all directions is
    ensured.

    The size of the final cell is determined by *cell*, except
    that the length alongh *axis* will be the sum of
    *atoms1.cell[axis]* and *atoms2.cell[axis]*. If *cell* is None,
    it will be interpolated between *atoms1* and *atoms2*, where
    *fix* determines their relative weight. Hence, if *fix* equals
    zero, the final cell will be determined purely from *atoms1* and
    if *fix* equals one, it will be determined purely from
    *atoms2*.

    An ase.geometry.IncompatibleCellError exception is raised if the
    cells of *atoms1* and *atoms2* are incopatible, e.g. if the far
    corner of the unit cell of either *atoms1* or *atoms2* is
    displaced more than *maxstrain*. Setting *maxstrain* to None,
    disable this check.

    If *distance* is not None, the size of the final cell, along the
    direction perpendicular to the interface, will be adjusted such
    that the distance between the closest atoms in *atoms1* and
    *atoms2* will be equal to *distance*. This option uses
    scipy.optimize.fmin() and hence require scipy to be installed.

    If *reorder* is True, then the atoms will be reordred such that
    all atoms with the same symbol will follow sequensially after each
    other, eg: 'Al2MnAl10Fe' -> 'Al12FeMn'.    

    Example:

    >>> import ase
    >>> from ase.lattice.spacegroup import crystal
    >>>
    # Create an Ag(110)-Si(110) interface with three atomic layers
    # on each side. 
    >>> a_ag = 4.09
    >>> ag = crystal(['Ag'], basis=[(0,0,0)], spacegroup=225, 
    ...              cellpar=[a_ag, a_ag, a_ag, 90., 90., 90.])
    >>> ag110 = cut(ag, (0, 0, 3), (-1.5, 1.5, 0), nlayers=3)
    >>>
    >>> a_si = 5.43
    >>> si = crystal(['Si'], basis=[(0,0,0)], spacegroup=227, 
    ...              cellpar=[a_si, a_si, a_si, 90., 90., 90.])
    >>> si110 = cut(si, (0, 0, 2), (-1, 1, 0), nlayers=3)
    >>>
    >>> interface = stack(ag110, si110, maxstrain=1)
    >>> ase.view(interface)  # doctest: +SKIP
    >>>
    # Once more, this time adjusted such that the distance between
    # the closest Ag and Si atoms will be 2.3 Angstrom (requires scipy).
    >>> interface2 = stack(ag110, si110, 
    ...                    maxstrain=1, distance=2.3)   # doctest:+ELLIPSIS
    Optimization terminated successfully.
        ...
    >>> ase.view(interface2)  # doctest: +SKIP
    """
    atoms1 = atoms1.copy()
    atoms2 = atoms2.copy()

    if (np.sign(np.linalg.det(atoms1.cell)) != 
        np.sign(np.linalg.det(atoms2.cell))):
        raise IncompatibleCellError('*atoms1* amd *atoms2* must both either '
                                    'have a lefthanded or a righanded cell.')

    c1 = np.linalg.norm(atoms1.cell[axis])
    c2 = np.linalg.norm(atoms2.cell[axis])
    if cell is None:
        cell1 = atoms1.cell.copy()
        cell2 = atoms2.cell.copy()
        cell1[axis] /= c1
        cell2[axis] /= c2
        cell = cell1 + fix*(cell2 - cell1)
    cell[axis] /= np.linalg.norm(cell[axis])
    cell1 = cell.copy()
    cell2 = cell.copy()
    cell1[axis] *= c1
    cell2[axis] *= c2

    if maxstrain:
        strain1 = np.sqrt(((cell1 - atoms1.cell).sum(axis=0)**2).sum())
        strain2 = np.sqrt(((cell2 - atoms2.cell).sum(axis=0)**2).sum())
        if strain1 > maxstrain or strain2 > maxstrain:
            raise IncompatibleCellError(
                '*maxstrain* exceeded. *atoms1* strained %f and '
                '*atoms2* strained %f.'%(strain1, strain2))

    atoms1.set_cell(cell1, scale_atoms=True)
    atoms2.set_cell(cell2, scale_atoms=True)

    if distance is not None:
        from scipy.optimize import fmin
        def mindist(pos1, pos2):
            n1 = len(pos1)
            n2 = len(pos2)
            idx1 = np.arange(n1).repeat(n2)
            idx2 = np.tile(np.arange(n2), n1)
            return np.sqrt(((pos1[idx1] - pos2[idx2])**2).sum(axis=1).min())
        def func(x):
            t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
            pos1 = atoms1.positions + t1
            pos2 = atoms2.positions + t2
            d1 = mindist(pos1, pos2 + (h1 + 1.0)*atoms1.cell[axis])
            d2 = mindist(pos2, pos1 + (h2 + 1.0)*atoms2.cell[axis])
            return (d1 - distance)**2 + (d2 - distance)**2
        atoms1.center()
        atoms2.center()
        x0 = np.zeros((8,))
        x = fmin(func, x0)
        t1, t2, h1, h2 = x[0:3], x[3:6], x[6], x[7]
        atoms1.translate(t1)
        atoms2.translate(t2)
        atoms1.cell[axis] *= 1.0 + h1
        atoms2.cell[axis] *= 1.0 + h2

    atoms2.translate(atoms1.cell[axis])
    atoms1.cell[axis] += atoms2.cell[axis]
    atoms1.extend(atoms2)

    if reorder:
        atoms1 = sort(atoms1)

    return atoms1


def sort(atoms, tags=None):
    """Return a new Atoms object with sorted atomic order. The default
    is to order according to chemical symbols, but if *tags* is not
    None, it will be used instead. A stable sorting algorithm is used.

    Example:
    >>> import ase
    >>> from ase.lattice.spacegroup import crystal
    >>>
    # Two unit cells of NaCl
    >>> a = 5.64
    >>> nacl = crystal(['Na', 'Cl'], [(0, 0, 0), (0.5, 0.5, 0.5)], 
    ... spacegroup=225, cellpar=[a, a, a, 90, 90, 90]).repeat((2, 1, 1))
    >>> nacl.get_chemical_symbols()
    ['Na', 'Na', 'Na', 'Na', 'Cl', 'Cl', 'Cl', 'Cl', 'Na', 'Na', 'Na', 'Na', 'Cl', 'Cl', 'Cl', 'Cl']
    >>> nacl_sorted = sort(nacl)
    >>> nacl_sorted.get_chemical_symbols()
    ['Cl', 'Cl', 'Cl', 'Cl', 'Cl', 'Cl', 'Cl', 'Cl', 'Na', 'Na', 'Na', 'Na', 'Na', 'Na', 'Na', 'Na']
    >>> np.all(nacl_sorted.cell == nacl.cell)
    True
    """
    if tags is None:
        tags = atoms.get_chemical_symbols()
    else:
        tags = list(tags)
    deco = [(tag, i) for i, tag in enumerate(tags)]
    deco.sort()
    indices = [i for tag, i in deco]
    return atoms[indices]


def rotate(atoms, a1, a2, b1, b2, rotate_cell=True):
    """Rotate *atoms*, such that *a1* will be rotated to *a2* and *b1*
    to *b2*."""
    from numpy.linalg import norm, det
    a1 = np.asarray(a1, dtype=float)/norm(a1)
    a2 = np.asarray(a2, dtype=float)/norm(a2)
    b1 = np.asarray(b1, dtype=float)/norm(b1)
    b2 = np.asarray(b2, dtype=float)/norm(b2)
    if norm(a2 - a1) < 1e-5:
        n = 0.5*(a1 + a2)
        a1, a2 = b1, b2
    elif norm(b2 - b1) < 1e-5:
        n = 0.5*(b1 + b2)
    else:
        n = np.cross(a2 - a1, b2 - b1)
    n /= norm(n)
    ap1 = a1 - np.dot(a1, n)*n
    ap2 = a2 - np.dot(a2, n)*n
    angle = np.arccos(np.dot(ap1, ap2)/(norm(ap1)*norm(ap2)))
    angle *= np.sign(det((ap1, ap2, n)))
    atoms.rotate(n, angle, rotate_cell=rotate_cell)



#-----------------------------------------------------------------
# Self test
if __name__ == '__main__':
    import doctest
    print 'doctest: ', doctest.testmod()