This file is indexed.

/usr/share/pyshared/ase/utils/linesearch.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import numpy as np
import __builtin__
pymin = __builtin__.min
pymax = __builtin__.max

class LineSearch:
    def __init__(self,  xtol=1e-14):

        self.xtol = xtol
        self.task = 'START'
        self.isave = np.zeros((2,), np.intc)
        self.dsave = np.zeros((13,), float)
        self.fc = 0
        self.gc = 0
        self.case = 0
        self.old_stp = 0

    def _line_search(self, func, myfprime, xk, pk, gfk, old_fval, old_old_fval,
                     maxstep=.2, c1=.23, c2=0.46, xtrapl=1.1, xtrapu=4.,
                     stpmax=50., stpmin=1e-8, args=()):
        self.stpmin = stpmin
        self.pk = pk
        p_size = np.sqrt((pk **2).sum())
        self.stpmax = stpmax
        self.xtrapl = xtrapl
        self.xtrapu = xtrapu
        self.maxstep = maxstep
        phi0 = old_fval
        derphi0 = np.dot(gfk,pk)
        self.dim = len(pk)
        self.gms = np.sqrt(self.dim) * maxstep
        #alpha1 = pymin(maxstep,1.01*2*(phi0-old_old_fval)/derphi0)
        alpha1 = 1.
        self.no_update = False

        if isinstance(myfprime,type(())):
            eps = myfprime[1]
            fprime = myfprime[0]
            newargs = (f,eps) + args
            gradient = False
        else:
            fprime = myfprime
            newargs = args
            gradient = True

        fval = old_fval
        gval = gfk
        self.steps=[]

        while 1:
            stp = self.step(alpha1, phi0, derphi0, c1, c2,
                                             self.xtol,
                                             self.isave, self.dsave)

            if self.task[:2] == 'FG':
                alpha1 = stp
                fval = func(xk + stp * pk, *args)
                self.fc += 1
                gval = fprime(xk + stp * pk, *newargs)
                if gradient: self.gc += 1
                else: self.fc += len(xk) + 1
                phi0 = fval
                derphi0 = np.dot(gval,pk)
                self.old_stp = alpha1
                if self.no_update == True:
                    break
            else:
                break

        if self.task[:5] == 'ERROR' or self.task[1:4] == 'WARN':
            stp = None  # failed
        return stp, fval, old_fval, self.no_update

    def step(self, stp, f, g, c1, c2, xtol, isave, dsave):
        if self.task[:5] == 'START':
            # Check the input arguments for errors.
            if stp < self.stpmin:
                self.task = 'ERROR: STP .LT. minstep'
            if stp > self.stpmax:
                self.task = 'ERROR: STP .GT. maxstep'
            if g >= 0:
                self.task = 'ERROR: INITIAL G >= 0'
            if c1 < 0:
                self.task = 'ERROR: c1 .LT. 0'
            if c2 < 0:
                self.task = 'ERROR: c2 .LT. 0'
            if xtol < 0:
                self.task = 'ERROR: XTOL .LT. 0'
            if self.stpmin < 0:
                self.task = 'ERROR: minstep .LT. 0'
            if self.stpmax < self.stpmin:
                self.task = 'ERROR: maxstep .LT. minstep'
            if self.task[:5] == 'ERROR':
                return stp

            # Initialize local variables.
            self.bracket = False
            stage = 1
            finit = f
            ginit = g
            gtest = c1 * ginit
            width = self.stpmax - self.stpmin
            width1 = width / .5
#           The variables stx, fx, gx contain the values of the step,
#           function, and derivative at the best step.
#           The variables sty, fy, gy contain the values of the step,
#           function, and derivative at sty.
#           The variables stp, f, g contain the values of the step,
#           function, and derivative at stp.
            stx = 0
            fx = finit
            gx = ginit
            sty = 0
            fy = finit
            gy = ginit
            stmin = 0
            stmax = stp + self.xtrapu * stp
            self.task = 'FG'
            self.save((stage, ginit, gtest, gx,
                       gy, finit, fx, fy, stx, sty,
                       stmin, stmax, width, width1))
            stp = self.determine_step(stp)
            #return stp, f, g
            return stp
        else:
            if self.isave[0] == 1:
                self.bracket = True
            else:
                self.bracket = False
            stage = self.isave[1]
            (ginit, gtest, gx, gy, finit, fx, fy, stx, sty, stmin, stmax, \
            width, width1) =self.dsave

#           If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
#           algorithm enters the second stage.
            ftest = finit + stp * gtest
            if stage == 1 and f < ftest and g >= 0.:
                stage = 2

#           Test for warnings.
            if self.bracket and (stp <= stmin or stp >= stmax):
                self.task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS'
            if self.bracket and stmax - stmin <= self.xtol * stmax:
                self.task = 'WARNING: XTOL TEST SATISFIED'
            if stp == self.stpmax and f <= ftest and g <= gtest:
                self.task = 'WARNING: STP = maxstep'
            if stp == self.stpmin and (f > ftest or g >= gtest):
                self.task = 'WARNING: STP = minstep'

#           Test for convergence.
            if f <= ftest and abs(g) <= c2 * (- ginit):
                self.task = 'CONVERGENCE'

#           Test for termination.
            if self.task[:4] == 'WARN' or self.task[:4] == 'CONV':
                self.save((stage, ginit, gtest, gx,
                           gy, finit, fx, fy, stx, sty,
                           stmin, stmax, width, width1))
                #return stp, f, g
                return stp

#              A modified function is used to predict the step during the
#              first stage if a lower function value has been obtained but
#              the decrease is not sufficient.
            #if stage == 1 and f <= fx and f > ftest:
#           #    Define the modified function and derivative values.
            #    fm =f - stp * gtest
            #    fxm = fx - stx * gtest
            #    fym = fy - sty * gtest
            #    gm = g - gtest
            #    gxm = gx - gtest
            #    gym = gy - gtest

#               Call step to update stx, sty, and to compute the new step.
            #    stx, sty, stp, gxm, fxm, gym, fym = self.update (stx, fxm, gxm, sty,
            #                                        fym, gym, stp, fm, gm,
            #                                        stmin, stmax)

#           #    Reset the function and derivative values for f.

            #    fx = fxm + stx * gtest
            #    fy = fym + sty * gtest
            #    gx = gxm + gtest
            #    gy = gym + gtest

            #else:
#           Call step to update stx, sty, and to compute the new step.

            stx, sty, stp, gx, fx, gy, fy= self.update(stx, fx, gx, sty,
                                               fy, gy, stp, f, g,
                                               stmin, stmax)


#           Decide if a bisection step is needed.

            if self.bracket:
                if abs(sty-stx) >= .66 * width1:
                    stp = stx + .5 * (sty - stx)
                width1 = width
                width = abs(sty - stx)

#           Set the minimum and maximum steps allowed for stp.

            if self.bracket:
                stmin = min(stx, sty)
                stmax = max(stx, sty)
            else:
                stmin = stp + self.xtrapl * (stp - stx)
                stmax = stp + self.xtrapu * (stp - stx)

#           Force the step to be within the bounds maxstep and minstep.

            stp = max(stp, self.stpmin)
            stp = min(stp, self.stpmax)

            if (stx == stp and stp == self.stpmax and stmin > self.stpmax):
                self.no_update = True
#           If further progress is not possible, let stp be the best
#           point obtained during the search.

            if (self.bracket and stp < stmin or stp >= stmax) \
               or (self.bracket and stmax - stmin < self.xtol * stmax):
                stp = stx

#           Obtain another function and derivative.

            self.task = 'FG'
            self.save((stage, ginit, gtest, gx,
                       gy, finit, fx, fy, stx, sty,
                       stmin, stmax, width, width1))
            return stp

    def update(self, stx, fx, gx, sty, fy, gy, stp, fp, gp,
               stpmin, stpmax):
        sign = gp * (gx / abs(gx))

#       First case: A higher function value. The minimum is bracketed.
#       If the cubic step is closer to stx than the quadratic step, the
#       cubic step is taken, otherwise the average of the cubic and
#       quadratic steps is taken.
        if fp > fx:  #case1
            self.case = 1
            theta = 3. * (fx - fp) / (stp - stx) + gx + gp
            s = max(abs(theta), abs(gx), abs(gp))
            gamma = s * np.sqrt((theta / s) ** 2. - (gx / s) * (gp / s))
            if stp < stx:
                gamma = -gamma
            p = (gamma - gx) + theta
            q = ((gamma - gx) + gamma) + gp
            r = p / q
            stpc = stx + r * (stp - stx)
            stpq = stx + ((gx / ((fx - fp) / (stp-stx) + gx)) / 2.) \
                   * (stp - stx)
            if (abs(stpc - stx) < abs(stpq - stx)):
               stpf = stpc
            else:
               stpf = stpc + (stpq - stpc) / 2.

            self.bracket = True

#       Second case: A lower function value and derivatives of opposite
#       sign. The minimum is bracketed. If the cubic step is farther from
#       stp than the secant step, the cubic step is taken, otherwise the
#       secant step is taken.

        elif sign < 0:  #case2
            self.case = 2
            theta = 3. * (fx - fp) / (stp - stx) + gx + gp
            s = max(abs(theta), abs(gx), abs(gp))
            gamma = s * np.sqrt((theta / s) ** 2 - (gx / s) * (gp / s))
            if stp > stx:
                 gamma = -gamma
            p = (gamma - gp) + theta
            q = ((gamma - gp) + gamma) + gx
            r = p / q
            stpc = stp + r * (stx - stp)
            stpq = stp + (gp / (gp - gx)) * (stx - stp)
            if (abs(stpc - stp) > abs(stpq - stp)):
               stpf = stpc
            else:
               stpf = stpq
            self.bracket = True

#       Third case: A lower function value, derivatives of the same sign,
#       and the magnitude of the derivative decreases.

        elif abs(gp) < abs(gx):  #case3
            self.case = 3
#           The cubic step is computed only if the cubic tends to infinity
#           in the direction of the step or if the minimum of the cubic
#           is beyond stp. Otherwise the cubic step is defined to be the
#           secant step.

            theta = 3. * (fx - fp) / (stp - stx) + gx + gp
            s = max(abs(theta), abs(gx), abs(gp))

#           The case gamma = 0 only arises if the cubic does not tend
#           to infinity in the direction of the step.

            gamma = s * np.sqrt(max(0.,(theta / s) ** 2-(gx / s) * (gp / s)))
            if stp > stx:
                gamma = -gamma
            p = (gamma - gp) + theta
            q = (gamma + (gx - gp)) + gamma
            r = p / q
            if r < 0. and gamma != 0:
               stpc = stp + r * (stx - stp)
            elif stp > stx:
               stpc = stpmax
            else:
               stpc = stpmin
            stpq = stp + (gp / (gp - gx)) * (stx - stp)

            if self.bracket:

#               A minimizer has been bracketed. If the cubic step is
#               closer to stp than the secant step, the cubic step is
#               taken, otherwise the secant step is taken.

                if abs(stpc - stp) < abs(stpq - stp):
                    stpf = stpc
                else:
                    stpf = stpq
                if stp > stx:
                    stpf = min(stp + .66 * (sty - stp), stpf)
                else:
                    stpf = max(stp + .66 * (sty - stp), stpf)
            else:

#               A minimizer has not been bracketed. If the cubic step is
#               farther from stp than the secant step, the cubic step is
#               taken, otherwise the secant step is taken.

                if abs(stpc - stp) > abs(stpq - stp):
                   stpf = stpc
                else:
                   stpf = stpq
                stpf = min(stpmax, stpf)
                stpf = max(stpmin, stpf)

#       Fourth case: A lower function value, derivatives of the same sign,
#       and the magnitude of the derivative does not decrease. If the
#       minimum is not bracketed, the step is either minstep or maxstep,
#       otherwise the cubic step is taken.

        else:  #case4
            self.case = 4
            if self.bracket:
                theta = 3. * (fp - fy) / (sty - stp) + gy + gp
                s = max(abs(theta), abs(gy), abs(gp))
                gamma = s * np.sqrt((theta / s) ** 2 - (gy / s) * (gp / s))
                if stp > sty:
                    gamma = -gamma
                p = (gamma - gp) + theta
                q = ((gamma - gp) + gamma) + gy
                r = p / q
                stpc = stp + r * (sty - stp)
                stpf = stpc
            elif stp > stx:
                stpf = stpmax
            else:
                stpf = stpmin

#       Update the interval which contains a minimizer.

        if fp > fx:
            sty = stp
            fy = fp
            gy = gp
        else:
            if sign < 0:
                sty = stx
                fy = fx
                gy = gx
            stx = stp
            fx = fp
            gx = gp
#       Compute the new step.

        stp = self.determine_step(stpf)

        return stx, sty, stp, gx, fx, gy, fy

    def determine_step(self, stp):
        dr = stp - self.old_stp
        if abs(pymax(self.pk) * dr) > self.maxstep:
            dr /= abs((pymax(self.pk) * dr) / self.maxstep)
        stp = self.old_stp + dr
        return stp

    def save(self, data):
        if self.bracket:
            self.isave[0] = 1
        else:
            self.isave[0] = 0
        self.isave[1] = data[0]
        self.dsave = data[1:]