This file is indexed.

/usr/share/pyshared/ase/visualize/primiplotter.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
"""An experimental package for making plots during a simulation.

A PrimiPlotter can plot a list of atoms on one or more output devices.
"""

from numpy import *
from ase.visualize.colortable import color_table
import ase.data
import sys, os, time, weakref

class PrimiPlotterBase:
    "Base class for PrimiPlotter and Povrayplotter."
    #def set_dimensions(self, dims):
    #    "Set the size of the canvas (a 2-tuple)."
    #    self.dims = dims
        
    def set_rotation(self, rotation):
        "Set the rotation angles (in degrees)."
        self.angles[:] = array(rotation) * (pi/180)
        
    def set_radii(self, radii):
        """Set the atomic radii.  Give an array or a single number."""
        self.radius = radii

    def set_colors(self, colors):
        """Explicitly set the colors of the atoms."""
        self.colors = colors

    def set_color_function(self, colors):
        """Set a color function, to be used to color the atoms."""
        if callable(colors):
            self.colorfunction = colors
        else:
            raise TypeError, "The color function is not callable."

    def set_invisible(self, inv):
        """Choose invisible atoms."""
        self.invisible = inv

    def set_invisibility_function(self, invfunc):
        """Set an invisibility function."""
        if callable(invfunc):
            self.invisibilityfunction = invfunc
        else:
            raise TypeError, "The invisibility function is not callable."

    def set_cut(self, xmin=None, xmax=None, ymin=None, ymax=None,
               zmin=None, zmax=None):
        self.cut = {"xmin":xmin, "xmax":xmax, "ymin":ymin, "ymax":ymax,
                    "zmin":zmin, "zmax":zmax}
    
    def update(self, newatoms = None):
        """Cause a plot (respecting the interval setting).

        update causes a plot to be made.  If the interval variable was
        specified when the plotter was create, it will only produce a
        plot with that interval.  update takes an optional argument,
        newatoms, which can be used to replace the list of atoms with
        a new one.
        """
        if newatoms is not None:
            self.atoms = newatoms
        if self.skipnext <= 0:
            self.plot()
            self.skipnext = self.interval
        self.skipnext -= 1
        
    def set_log(self, log):
        """Sets a file for logging.

        log may be an open file or a filename.
        """
        if hasattr(log, "write"):
            self.logfile = log
            self.ownlogfile = False
        else:
            self.logfile = open(log, "w")
            self.ownlogfile = True

    def log(self, message):
        """logs a message to the file set by set_log."""
        if self.logfile is not None:
            self.logfile.write(message+"\n")
            self.logfile.flush()
        self._verb(message)
        
    def _verb(self, txt):
        if self.verbose:
            sys.stderr.write(txt+"\n")
    
    def _starttimer(self):
        self.starttime = time.time()

    def _stoptimer(self):
        elapsedtime = time.time() - self.starttime
        self.totaltime = self.totaltime + elapsedtime
        print "plotting time %s sec (total %s sec)" % (elapsedtime,
                                                       self.totaltime)

    def _getpositions(self):
        return self.atoms.get_positions()

    def _getradii(self):
        if self.radius is not None:
            if hasattr(self.radius, "shape"):
                return self.radius   # User has specified an array
            else:
                return self.radius * ones(len(self.atoms), float)
        # No radii specified.  Try getting them from the atoms.
        try:
            return self.atoms.get_atomic_radii()
        except AttributeError:
            try:
                z = self._getatomicnumbers()
            except AttributeError:
                pass
            else:
                return ase.data.covalent_radii[z]
        # No radius available.  Defaulting to 1.0
        return ones(len(self.atoms), float)

    def _getatomicnumbers(self):
        return self.atoms.get_atomic_numbers()
    
    def _getcolors(self):
        # Try any explicitly given colors
        if self.colors is not None:
            if type(self.colors) == type({}):
                self.log("Explicit colors dictionary")
                return _colorsfromdict(self.colors,
                                       asarray(self.atoms.get_tags(),int))
            else:
                self.log("Explicit colors")
                return self.colors
        # Try the color function, if given
        if self.colorfunction is not None:
            self.log("Calling color function.")
            return self.colorfunction(self.atoms)
        # Maybe the atoms know their own colors
        try:
            c = self.atoms.get_colors()
        except AttributeError:
            c = None
        if c is not None:
            if type(c) == type({}):
                self.log("Color dictionary from atoms.get_colors()")
                return _colorsfromdict(c, asarray(self.atoms.get_tags(),int))
            else:
                self.log("Colors from atoms.get_colors()")
                return c
        # Default to white atoms
        self.log("No colors: using white")
        return ones(len(self.atoms), float)

    def _getinvisible(self):
        if self.invisible is not None:
            inv = self.invisible
        else:
            inv = zeros(len(self.atoms))
        if self.invisibilityfunction:
            inv = logical_or(inv, self.invisibilityfunction(self.atoms))
        r = self._getpositions()
        if len(r) > len(inv):
            # This will happen in parallel simulations due to ghost atoms.
            # They are invisible.  Hmm, this may cause trouble.
            i2 = ones(len(r))
            i2[:len(inv)] = inv
            inv = i2
            del i2
        if self.cut["xmin"] is not None:
            inv = logical_or(inv, less(r[:,0], self.cut["xmin"]))
        if self.cut["xmax"] is not None:
            inv = logical_or(inv, greater(r[:,0], self.cut["xmax"]))
        if self.cut["ymin"] is not None:
            inv = logical_or(inv, less(r[:,1], self.cut["ymin"]))
        if self.cut["ymax"] is not None:
            inv = logical_or(inv, greater(r[:,1], self.cut["ymax"]))
        if self.cut["zmin"] is not None:
            inv = logical_or(inv, less(r[:,2], self.cut["zmin"]))
        if self.cut["zmax"] is not None:
            inv = logical_or(inv, greater(r[:,2], self.cut["zmax"]))
        return inv        

    def __del__(self):
        if self.ownlogfile:
            self.logfile.close()
            
class PrimiPlotter(PrimiPlotterBase):
    """Primitive PostScript-based plots during a simulation.

    The PrimiPlotter plots atoms during simulations, extracting the
    relevant information from the list of atoms.  It is created using
    the list of atoms as an argument to the constructor.  Then one or
    more output devices must be attached using set_output(device).  The
    list of supported output devices is at the end.

    The atoms are plotted as circles.  The system is first rotated
    using the angles specified by set_rotation([vx, vy, vz]).  The
    rotation is vx degrees around the x axis (positive from the y
    toward the z axis), then vy degrees around the y axis (from x
    toward z), then vz degrees around the z axis (from x toward y).
    The rotation matrix is the same as the one used by RasMol.

    Per default, the system is scaled so it fits within the canvas
    (autoscale mode).  Autoscale mode is enabled and disables using
    autoscale("on") or autoscale("off").  A manual scale factor can be
    set with set_scale(scale), this implies autoscale("off").  The
    scale factor (from the last autoscale event or from set_scale) can
    be obtained with get_scale().  Finally, an explicit autoscaling can
    be triggered with autoscale("now"), this is mainly useful before
    calling get_scale or before disabling further autoscaling.
    Finally, a relative scaling factor can be set with
    SetRelativeScaling(), it is multiplied to the usual scale factor
    (from autoscale or from set_scale).  This is probably only useful in
    connection with autoscaling.

    The radii of the atoms are obtained from the first of the following
    methods which work:
    
    1.  If the radii are specified using PrimiPlotter.set_radii(r),
        they are used.  Must be an array, or a single number.

    2.  If the atoms has a get_atomic_radii() method, it is used.  This is
        unlikely.

    3.  If the atoms has a get_atomic_numbers() method, the
        corresponding covalent radii are extracted from the
        ASE.ChemicalElements module.

    4.  If all else fails, the radius is set to 1.0 Angstrom.

    The atoms are colored using the first of the following methods
    which work.

    1.  If colors are explicitly set using PrimiPlotter.set_colors(),
        they are used.

    2.  If these colors are specified as a dictionary, the tags
        (from atoms.get_tags()) are used as an index into the
        dictionary to get the actual colors of the atoms.

    3.  If a color function has been set using
        PrimiPlotter.set_color_function(), it is called with the atoms
        as an argument, and is expected to return an array of colors.

    4.  If the atoms have a get_colors() method, it is used to get the
        colors.

    5.  If these colors are specified as a dictionary, the tags
        (from atoms.get_tags()) are used as an index into the
        dictionary to get the actual colors of the atoms.

    6.  If all else fails, the atoms will be white.

    The colors are specified as an array of colors, one color per
    atom.  Each color is either a real number from 0.0 to 1.0,
    specifying a grayscale (0.0 = black, 1.0 = white), or an array of
    three numbers from 0.0 to 1.0, specifying RGB values.  The colors
    of all atoms are thus a Numerical Python N-vector or a 3xN matrix.

    In cases 1a and 3a above, the keys of the dictionary are integers,
    and the values are either numbers (grayscales) or 3-vectors (RGB
    values), or strings with X11 color names, which are then
    translated to RGB values.  Only in case 1a and 3a are strings
    recognized as colors.

    Some atoms may be invisible, and thus left out of the plot.
    Invisible atoms are determined from the following algorithm.
    Unlike the radius or the coloring, all points below are tried and
    if an atom is invisible by any criterion, it is left out of the plot.

    1.  All atoms are visible.
    
    2.  If PrimiPlotter.set_invisible() has be used to specify invisible
        atoms, any atoms for which the value is non-zero becomes invisible.

    3.  If an invisiblility function has been set with
        PrimiPlotter.set_invisibility_function(), it is called with the
        atoms as argument.  It is expected to return an integer per
        atom, any non-zero value makes that atom invisible.

    4.  If a cut has been specified using set_cut, any atom outside the
        cut is made invisible.

    Note that invisible atoms are still included in the algorithm for
    positioning and scaling the plot.

    
    The following output devices are implemented.
    
    PostScriptFile(prefix):  Create PS files names prefix0000.ps etc.

    PnmFile(prefix):  Similar, but makes PNM files.

    GifFile(prefix):  Similar, but makes GIF files.

    JpegFile(prefix):  Similar, but makes JPEG files.

    X11Window():  Show the plot in an X11 window using ghostscript.

    Output devices writing to files take an extra optional argument to
    the constructor, compress, specifying if the output file should be
    gzipped.  This is not allowed for some (already compressed) file
    formats.

    Instead of a filename prefix, a filename containing a % can be
    used.  In that case the filename is expected to expand to a real
    filename when used with the Python string formatting operator (%)
    with the frame number as argument.  Avoid generating spaces in the
    file names: use e.g. %03d instead of %3d.  
    """
    def __init__(self, atoms, verbose=0, timing=0, interval=1, initframe=0):
        """

        Parameters to the constructor:

        atoms: The atoms to be plottet.

        verbose = 0:  Write progress information to stderr.

        timing = 0:  Collect timing information.

        interval = 1: If specified, a plot is only made every
        interval'th time update() is called.  Deprecated, normally you
        should use the interval argument when attaching the plotter to
        e.g. the dynamics.

        initframe = 0: Initial frame number, i.e. the number of the
        first plot.
        
        """
        self.atoms = atoms
        self.outputdevice = []
        self.angles = zeros(3, float)
        self.dims = (512, 512)
        self.verbose = verbose
        self.timing = timing
        self.totaltime = 0.0
        self.radius = None
        self.colors = None
        self.colorfunction = None
        self.n = initframe
        self.interval = interval
        self.skipnext = 0 # Number of calls to update before anything happens.
        self.a_scale = 1
        self.relativescale = 1.0
        self.invisible = None
        self.invisibilityfunction = None
        self.set_cut()   # No cut
        self.isparallel = 0
        self.logfile = None
        self.ownlogfile = False
        
    def set_output(self, device):
        self.outputdevice.append(device)
        device.set_dimensions(self.dims)
        device.set_owner(weakref.proxy(self))

    def set_dimensions(self, dims):
        "Set the size of the canvas (a 2-tuple)."
        if self.outputdevice:
            raise RuntimeError("Cannot set dimensions after an output device has been specified.")
        self.dims = dims
        
    def autoscale(self, mode):
        if mode == "on":
            self.a_scale = 1
        elif mode == "off":
            self.a_scale = 0
        elif mode == "now":
            coords = self._rotate(self.atoms.get_positions())
            radii = self._getradii()
            self._autoscale(coords, radii)
        else:
            raise ValueError, "Unknown autoscale mode: ",+str(mode)

    def set_scale(self, scale):
        self.autoscale("off")
        self.scale = scale

    def get_scale(self):
        return self.scale

    def set_relative_scale(self, rscale = 1.0):
        self.relativescale = rscale

    def plot(self):
        """Create a plot now.  Does not respect the interval timer.

        This method makes a plot unconditionally.  It does not look at
        the interval variable, nor is this plot taken into account in
        the counting done by the update() method if an interval
        variable was specified.
        """
        if self.timing:
            self._starttimer()
        self.log("PrimiPlotter: Starting plot at "
                 + time.strftime("%a, %d %b %Y %H:%M:%S"))
        colors = self._getcolors()
        invisible = self._getinvisible()
        coords = self._rotate(self._getpositions())
        radii = self._getradii()
        if self.a_scale:
            self._autoscale(coords,radii)
        scale = self.scale * self.relativescale
        coords = scale * coords
        center = self._getcenter(coords)
        offset = array(self.dims + (0.0,))/2.0 - center
        coords = coords + offset
        self.log("Scale is %f and size is (%d, %d)"
                 % (scale, self.dims[0], self.dims[1]))
        self.log("Physical size of plot is %f Angstrom times %f Angstrom"
                 % (self.dims[0] / scale, self.dims[1] / scale))

        self._verb("Sorting.")
        order = argsort(coords[:,2])
        coords = coords[order]  ### take(coords, order)
        radii = radii[order]    ### take(radii, order)
        colors = colors[order]  ### take(colors, order)
        invisible = invisible[order]  ### take(invisible, order)
        if self.isparallel:
            id = arange(len(coords))[order] ### take(arange(len(coords)), order)
        else:
            id = None
            
        radii = radii * scale
        selector = self._computevisibility(coords, radii, invisible, id)
        coords = compress(selector, coords, 0)
        radii = compress(selector, radii)
        colors = compress(selector, colors, 0)
        self._makeoutput(scale, coords, radii, colors)
        self.log("PrimiPlotter: Finished plotting at "
                 + time.strftime("%a, %d %b %Y %H:%M:%S"))
        self.log("\n\n")
        if self.timing:
            self._stoptimer()

    def _computevisibility(self, coords, rad, invisible, id, zoom = 1):
        xy = coords[:,:2]
        typradius = sum(rad) / len(rad)
        if typradius < 4.0:
            self.log("Refining visibility check.")
            if zoom >= 16:
                raise RuntimeError, "Cannot check visibility - too deep recursion."
            return self._computevisibility(xy*2, rad*2, invisible, id, zoom*2)
        else:
            self.log("Visibility(r_typ = %.1f pixels)" % (typradius,))
        dims = array(self.dims) * zoom
        maxr = int(ceil(max(rad))) + 2
        canvas = zeros((dims[0] + 4*maxr, dims[1] + 4*maxr), int8)
        # Atoms are only invisible if they are within the canvas, or closer
        # to its edge than their radius
        visible = (greater(xy[:,0], -rad) * less(xy[:,0], dims[0]+rad)
                   * greater(xy[:,1], -rad) * less(xy[:,1], dims[1]+rad)
                   * logical_not(invisible))
        # Atoms are visible if not hidden behind other atoms
        xy = floor(xy + 2*maxr + 0.5).astype(int)
        masks = {}
        for i in xrange(len(rad)-1, -1, -1):
            if (i % 100000) == 0 and i:
                self._verb(str(i))
            if not visible[i]:
                continue
            x, y = xy[i]
            r = rad[i]
            try:
                mask, invmask, rn = masks[r]
            except KeyError:
                rn = int(ceil(r))
                nmask = 2*rn+1
                mask = (arange(nmask) - rn)**2
                mask = less(mask[:,newaxis]+mask[newaxis,:], r*r).astype(int8)
                invmask = equal(mask, 0).astype(int8)
                masks[r] = (mask, invmask, rn)
            window = logical_or(canvas[x-rn:x+rn+1, y-rn:y+rn+1], invmask)
            hidden = alltrue(window.flat)
            if hidden:
                visible[i] = 0
            else:
                canvas[x-rn:x+rn+1, y-rn:y+rn+1] = logical_or(canvas[x-rn:x+rn+1, y-rn:y+rn+1], mask)
        self.log("%d visible, %d hidden out of %d" %
                   (sum(visible), len(visible) - sum(visible), len(visible)))
        return visible
        
    def _rotate(self, positions):
        self.log("Rotation angles: %f %f %f" % tuple(self.angles))
        mat = dot(dot(_rot(self.angles[2], 2),
                      _rot(self.angles[1], 1)),
                  _rot(self.angles[0]+pi, 0))
        return dot(positions, mat)

    def _getcenter(self, coords):
        return array((max(coords[:,0]) + min(coords[:,0]),
                      max(coords[:,1]) + min(coords[:,1]), 0.0)) / 2.0

    def _autoscale(self, coords, radii):
        x = coords[:,0]
        y = coords[:,1]
        maxradius = max(radii)
        deltax = max(x) - min(x) + 2*maxradius
        deltay = max(y) - min(y) + 2*maxradius
        scalex = self.dims[0] / deltax
        scaley = self.dims[1] / deltay
        self.scale = 0.95 * min(scalex, scaley)
        self.log("Autoscale: %f" % self.scale)

    def _makeoutput(self, scale, coords, radii, colors):
        for device in self.outputdevice:
            device.inform_about_scale(scale)
            device.plot(self.n, coords, radii, colors)
        self.n = self.n + 1


class ParallelPrimiPlotter(PrimiPlotter):
    """A version of PrimiPlotter for parallel ASAP simulations.

    Used like PrimiPlotter, but only the output devices on the master
    node are used.  Most of the processing is distributed on the
    nodes, but the actual output is only done on the master.  See the
    PrimiPlotter docstring for details.
    """
    def __init__(self, *args, **kwargs):
        apply(PrimiPlotter.__init__, (self,)+args, kwargs)
        self.isparallel = 1
        import Scientific.MPI
        self.MPI = Scientific.MPI
        self.mpi = Scientific.MPI.world
        if self.mpi is None:
            raise RuntimeError, "MPI is not available."
        self.master = self.mpi.rank == 0
        self.mpitag = 42   # Reduce chance of collision with other modules.
        
    def set_output(self, device):
        if self.master:
            PrimiPlotter.set_output(self, device)

    def set_log(self, log):
        if self.master:
            PrimiPlotter.set_log(self, log)

    def _getpositions(self):
        realpos = self.atoms.get_positions()
        ghostpos = self.atoms.GetGhostCartesianPositions()
        self.numberofrealatoms = len(realpos)
        self.numberofghostatoms = len(ghostpos)
        return concatenate((realpos, ghostpos))

    def _getatomicnumbers(self):
        realz = self.atoms.get_atomic_numbers()
        ghostz = self.atoms.GetGhostAtomicNumbers()
        return concatenate((realz, ghostz))

    def _getradius(self):
        r = PrimiPlotter._getradius(self)
        if len(r) == self.numberofrealatoms + self.numberofghostatoms:
            # Must have calculated radii from atomic numbers
            return r
        else:
            assert len(r) == self.numberofrealatoms
            # Heuristic: use minimum r for the ghosts
            ghostr = min(r) * ones(self.numberofghostatoms, float)
            return concatenate((r, ghostr))

    def _getcenter(self, coords):
        # max(x) and min(x) only works for rank-1 arrays in Numeric version 17.
        maximal = maximum.reduce(coords[:,0:2])
        minimal = minimum.reduce(coords[:,0:2])
        recvmax = zeros(2, maximal.typecode())
        recvmin = zeros(2, minimal.typecode())
        self.mpi.allreduce(maximal, recvmax, self.MPI.max)
        self.mpi.allreduce(minimal, recvmin, self.MPI.min)
        maxx, maxy = recvmax
        minx, miny = recvmin
        return array([maxx + minx, maxy + miny, 0.0]) / 2.0

    def _computevisibility(self, xy, rad, invisible, id, zoom = 1):
        # Find visible atoms, allowing ghost atoms to hide real atoms.
        v = PrimiPlotter._computevisibility(self, xy, rad, invisible, id, zoom)
        # Then remove ghost atoms
        return v * less(id, self.numberofrealatoms)

    def _autoscale(self, coords, radii):
        self._verb("Autoscale")
        n = len(self.atoms)
        x = coords[:n,0]
        y = coords[:n,1]
        assert len(x) == len(self.atoms)
        maximal = array([max(x), max(y), max(radii[:n])])
        minimal = array([min(x), min(y)])
        recvmax = zeros(3, maximal.typecode())
        recvmin = zeros(2, minimal.typecode())
        self.mpi.allreduce(maximal, recvmax, self.MPI.max)
        self.mpi.allreduce(minimal, recvmin, self.MPI.min)
        maxx, maxy, maxradius = recvmax
        minx, miny = recvmin
        deltax = maxx - minx + 2*maxradius
        deltay = maxy - miny + 2*maxradius
        scalex = self.dims[0] / deltax
        scaley = self.dims[1] / deltay
        self.scale = 0.95 * min(scalex, scaley)
        self.log("Autoscale: %f" % self.scale)

    def _getcolors(self):
        col = PrimiPlotter._getcolors(self)
        nghost = len(self.atoms.GetGhostCartesianPositions())
        newcolshape = (nghost + col.shape[0],) + col.shape[1:]
        newcol = zeros(newcolshape, col.typecode())
        newcol[:len(col)] = col
        return newcol
    
    def _makeoutput(self, scale, coords, radii, colors):
        if len(colors.shape) == 1:
            # Greyscales
            ncol = 1
        else:
            ncol = colors.shape[1]  # 1 or 3.
            assert ncol == 3  # RGB values
        # If one processor says RGB, all must convert
        ncolthis = array([ncol])
        ncolmax = zeros((1,), ncolthis.typecode())
        self.mpi.allreduce(ncolthis, ncolmax, self.MPI.max)
        ncolmax = ncolmax[0]
        if ncolmax > ncol:
            assert ncol == 1
            colors = colors[:,newaxis] + zeros(ncolmax)[newaxis,:]
            ncol = ncolmax
            assert colors.shape == (len(coords), ncol)
        # Now send data from slaves to master
        data = zeros((len(coords)+1, 4+ncol), float)
        data[:-1,:3] = coords
        data[:-1,3] = radii
        data[-1,-1] = 4+ncol  # Used to communicate shape
        if ncol == 1:
            data[:-1,4] = colors
        else:
            data[:-1,4:] = colors
        if not self.master:
            self.mpi.send(data, 0, self.mpitag)
        else:
            total = [data[:-1]]  # Last row is the dimensions.
            n = len(coords)
            colsmin = colsmax = 4+ncol
            for proc in range(1, self.mpi.size):
                self._verb("Receiving from processor "+str(proc))
                fdat = self.mpi.receive(float, proc, self.mpitag)[0]
                fdat.shape = (-1, fdat[-1])
                fdat = fdat[:-1]  # Last row is the dimensions.
                total.append(fdat)
                n = n + len(fdat)
                if fdat.shape[1] < colsmin:
                    colsmin = fdat.shape[1]
                if fdat.shape[1] > colsmax:
                    colsmax = fdat.shape[1]
            self._verb("Merging data")
            # Some processors may have only greyscales whereas others
            # may have RGB.  That will cause difficulties.
            trouble = colsmax != colsmin
            data = zeros((n, colsmax), float)
            if trouble:
                assert data.shape[1] == 7
            else:
                assert data.shape[1] == 7 or data.shape[1] == 5
            i = 0
            for d in total:
                if not trouble or d.shape[1] == 7:
                    data[i:i+len(d)] = d
                else:
                    assert d.shape[1] == 5
                    data[i:i+len(d), :5] = d
                    data[i:i+len(d), 5] = d[4]
                    data[i:i+len(d), 6] = d[4]
                i = i + len(d)
            assert i == len(data)
            # Now all data is on the master
            self._verb("Sorting merged data")
            order = argsort(data[:,2])
            data = data[order]   ### take(data, order)
            coords = data[:,:3]
            radii = data[:,3]
            if data.shape[1] == 5:
                colors = data[:,4]
            else:
                colors = data[:,4:]
            PrimiPlotter._makeoutput(self, scale, coords, radii, colors)
    
class _PostScriptDevice:
    """PostScript based output device."""
    offset = (0,0)   # Will be changed by some classes
    def __init__(self):
        self.scale = 1
        self.linewidth = 1
        self.outline = 1
        
    def set_dimensions(self, dims):
        self.dims = dims

    def set_owner(self, owner):
        self.owner = owner
        
    def inform_about_scale(self, scale):
        self.linewidth = 0.1 * scale

    def set_outline(self, value):
        self.outline = value
        return self   # Can chain these calls in set_output()
        
    def plot(self, *args, **kargs):
        self.Doplot(self.PSplot, *args, **kargs)
        
    def plotArray(self, *args, **kargs):
        self.Doplot(self.PSplotArray, *args, **kargs)
        
    def PSplot(self, file, n, coords, r, colors, noshowpage=0):
        xy = coords[:,:2]
        assert(len(xy) == len(r) and len(xy) == len(colors))
        if len(colors.shape) == 1:
            gray = 1
        else:
            gray = 0
            assert(colors.shape[1] == 3)
        file.write("%!PS-Adobe-2.0\n")
        file.write("%%Creator: Primiplot\n")
        file.write("%%Pages: 1\n")        
        file.write("%%%%BoundingBox: %d %d %d %d\n" %
                   (self.offset + (self.offset[0] + self.dims[0],
                                   self.offset[1] + self.dims[1])))
        file.write("%%EndComments\n")
        file.write("\n")
        file.write("% Enforce BoundingBox\n")
        file.write("%d %d moveto %d 0 rlineto 0 %d rlineto -%d 0 rlineto\n" %
                   ((self.offset + self.dims + (self.dims[0],))))
        file.write("closepath clip newpath\n\n")
        file.write("%f %f scale\n" % (2*(1.0/self.scale,)))
        file.write("%d %d translate\n" % (self.scale * self.offset[0],
                                          self.scale * self.offset[1]))
        file.write("\n")
        if gray:
            if self.outline:
                file.write("/circ { 0 360 arc gsave setgray fill grestore stroke } def\n")
            else:
                file.write("/circ { 0 360 arc setgray fill } def\n")
        else:
            if self.outline:
                file.write("/circ { 0 360 arc gsave setrgbcolor fill grestore stroke } def\n")
            else:
                file.write("/circ { 0 360 arc setrgbcolor fill } def\n")
        file.write("%f setlinewidth 0.0 setgray\n" %
                   (self.linewidth * self.scale,))
        
        if gray:
            data = zeros((len(xy), 4), float)
            data[:,0] = colors
            data[:,1:3] = (self.scale * xy)
            data[:,3] = (self.scale * r)
            for point in data:
                file.write("%.3f %.2f %.2f %.2f circ\n" % tuple(point))
        else:
            data = zeros((len(xy), 6), float)
            data[:,0:3] = colors
            data[:,3:5] = (self.scale * xy)
            data[:,5] = (self.scale * r)
            for point in data:
                file.write("%.3f %.3f %.3f %.2f %.2f %.2f circ\n" % tuple(point))
        if not noshowpage:
            file.write("showpage\n")
            
    def PSplotArray(self, file, n, data, noshowpage=0):
        assert(len(data.shape) == 3)
        assert(data.shape[0] == self.dims[1] and data.shape[1] == self.dims[0])
        data = clip((256*data).astype(int), 0, 255)
        file.write("%!PS-Adobe-2.0\n")
        file.write("%%Creator: Fieldplotter\n")
        file.write("%%Pages: 1\n")        
        file.write("%%%%BoundingBox: %d %d %d %d\n" %
                   (self.offset + (self.offset[0] + self.dims[0],
                                   self.offset[1] + self.dims[1])))
        file.write("%%EndComments\n")
        file.write("\n")
        file.write("%d %d translate\n" % self.offset)
        file.write("%f %f scale\n" % self.dims)
        file.write("\n")
        file.write("% String holding a single line\n")
        file.write("/pictline %d string def\n" %(data.shape[1]*data.shape[2],))
        file.write("\n")
        file.write("%d %d 8\n" % self.dims)
        file.write("[%d 0 0 %d 0 0]\n" % self.dims)
        file.write("{currentfile pictline readhexstring pop}\n")
        file.write("false %d colorimage\n" % (data.shape[2],))
        file.write("\n")
        s = ""
        for d in data.flat:
            s += ("%02X" % d)
            if len(s) >= 72:
                file.write(s+"\n")
                s = ""
        file.write(s+"\n")
        file.write("\n")
        if not noshowpage:
            file.write("showpage\n")
            
class _PostScriptToFile(_PostScriptDevice):
    """Output device for PS files."""
    compr_suffix = None
    def __init__(self, prefix, compress = 0):
        self.compress = compress
        if "'" in prefix:
            raise ValueError, "Filename may not contain a quote ('): "+prefix
        if "%" in prefix:
            # Assume the user knows what (s)he is doing
            self.filenames = prefix
        else:
            self.filenames = prefix + "%04d" + self.suffix
            if compress:
                if self.compr_suffix is None:
                    raise RuntimeError, "Compression not supported."
                self.filenames = self.filenames + self.compr_suffix
        _PostScriptDevice.__init__(self)

class PostScriptFile(_PostScriptToFile):
    suffix = ".ps"
    compr_suffix = ".gz"
    offset = (50,50)
    # Inherits __init__

    def Doplot(self, plotmethod, n, *args, **kargs):
        filename = self.filenames % (n,)
        self.owner.log("Output to PostScript file "+filename)
        if self.compress:
            file = os.popen("gzip > '"+filename+"'", "w")
        else:
            file = open(filename, "w")
        apply(plotmethod, (file, n)+args, kargs)
        file.close()

class _PS_via_PnmFile(_PostScriptToFile):
    gscmd = "gs -q -sDEVICE=pnmraw -sOutputFile=- -dDEVICEWIDTH=%d -dDEVICEHEIGHT=%d - "
    # Inherits __init__

    def Doplot(self, plotmethod, n, *args, **kargs):
        filename = self.filenames % (n,)
        self.owner.log("Output to bitmapped file " + filename)
        cmd = self.gscmd + self.converter
        if self.compress:
            cmd = cmd + "| gzip "
            
        cmd = (cmd+" > '%s'") % (self.dims[0], self.dims[1], filename)
        file = os.popen(cmd, "w")
        apply(plotmethod, (file, n)+args, kargs)
        file.close()

class PnmFile(_PS_via_PnmFile):
    suffix = ".pnm"
    compr_suffix = ".gz"
    converter = ""

class GifFile(_PS_via_PnmFile):
    suffix = ".gif"
    converter = "| ppmquant -floyd 256 2>/dev/null | ppmtogif 2>/dev/null"

class JpegFile(_PS_via_PnmFile):
    suffix = ".jpeg"
    converter = "| ppmtojpeg --smooth=5"
    
class X11Window(_PostScriptDevice):
    """Shows the plot in an X11 window."""
    #Inherits __init__
    gscmd = "gs -q -sDEVICE=x11 -dDEVICEWIDTH=%d -dDEVICEHEIGHT=%d -r72x72 -"
    def Doplot(self, plotmethod, n, *args, **kargs):
        self.owner.log("Output to X11 window")
        try:
            file = self.pipe
            self.pipe.write("showpage\n")
        except AttributeError:
            filename = self.gscmd % tuple(self.dims)
            file = os.popen(filename, "w")
            self.pipe = file
        kargs["noshowpage"] = 1
        apply(plotmethod, (file, n)+args, kargs)
        file.write("flushpage\n")
        file.flush()

# Helper functions
def _rot(v, axis):
    ax1, ax2 = ((1, 2), (0, 2), (0, 1))[axis]
    c, s = cos(v), sin(v)
    m = zeros((3,3), float)
    m[axis,axis] = 1.0
    m[ax1,ax1] = c
    m[ax2,ax2] = c
    m[ax1,ax2] = s
    m[ax2,ax1] = -s
    return m

def _colorsfromdict(dict, cls):
    """Extract colors from dictionary using cls as key."""
    assert(type(dict) == type({}))
    # Allow local modifications, to replace strings with rgb values.
    dict = dict.copy()  
    isgray, isrgb = 0, 0
    for k in dict.keys():
        v = dict[k]
        if type(v) == type("string"):
            v = color_table[v]
            dict[k] = v
        try:
            if len(v) == 3:
                isrgb = 1 # Assume it is an RGB value
                if not hasattr(v, "shape"):
                    dict[k] = array(v)   # Convert to array
            else:
                raise RuntimeError, "Unrecognized color object "+repr(v)
        except TypeError:
            isgray = 1 # Assume it is a number
    if isgray and isrgb:
        # Convert all to RGB
        for k in dict.keys():
            v = dict[k]
            if not hasattr(v, "shape"):
                dict[k] = v * ones(3, float)
    # Now the dictionary is ready
    if isrgb:
        colors = zeros((len(cls),3), float)
    else:
        colors = zeros((len(cls),), float)
    for i in xrange(len(cls)):
        colors[i] = dict[cls[i]]
    return colors