/usr/share/pyshared/dap/helper.py is in python-dap 2.2.6.7-1+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 | """Helper functions.
These are generic functions used mostly for writing plugins.
"""
__author__ = "Roberto De Almeida <rob@pydap.org>"
import sys
import re
import operator
import itertools
import copy
from urllib import quote, unquote
from dap.dtypes import *
from dap.dtypes import _basetypes
from dap.exceptions import ConstraintExpressionError
from dap.lib import isiterable
from dap.util.safeeval import expr_eval
from dap.util.ordereddict import odict
def constrain(dataset, constraints):
"""A simple example. We create a dataset holding three variables:
>>> dataset = DatasetType(name='foo')
>>> dataset['a'] = BaseType(name='a', type='Byte')
>>> dataset['b'] = BaseType(name='b', type='Byte')
>>> dataset['c'] = BaseType(name='c', type='Byte')
Now we give it a CE requesting only the variables ``a`` and ``b``:
>>> dataset2 = constrain(dataset, 'a,b')
>>> print dataset2 #doctest: +ELLIPSIS
{'a': <dap.dtypes.BaseType object at ...>, 'b': <dap.dtypes.BaseType object at ...>}
We can also request the variables in a different order:
>>> dataset2 = constrain(dataset, 'b,a')
>>> print dataset2 #doctest: +ELLIPSIS
{'b': <dap.dtypes.BaseType object at ...>, 'a': <dap.dtypes.BaseType object at ...>}
Another example. A dataset with two structures ``a`` and ``b``:
>>> dataset = DatasetType(name='foo')
>>> dataset['a'] = StructureType(name='a')
>>> dataset['a']['a1'] = BaseType(name='a1', type='Byte')
>>> dataset['b'] = StructureType(name='b')
>>> dataset['b']['b1'] = BaseType(name='b1', type='Byte')
>>> dataset['b']['b2'] = BaseType(name='b2', type='Byte')
If we request the structure ``b`` we should get it complete:
>>> dataset2 = constrain(dataset, 'a.a1,b')
>>> print dataset2 #doctest: +ELLIPSIS
{'a': {'a1': <dap.dtypes.BaseType object at ...>}, 'b': {'b1': <dap.dtypes.BaseType object at ...>, 'b2': <dap.dtypes.BaseType object at ...>}}
>>> dataset2 = constrain(dataset, 'b.b1')
>>> print dataset2 #doctest: +ELLIPSIS
{'b': {'b1': <dap.dtypes.BaseType object at ...>}}
Arrays can be sliced. Here we have a ``(2,3)`` array:
>>> dataset = DatasetType(name='foo')
>>> from numpy import array
>>> data = array([1,2,3,4,5,6])
>>> data.shape = (2,3)
>>> dataset['array'] = ArrayType(data=data, name='array', shape=(2,3), type='Int32')
>>> dataset2 = constrain(dataset, 'array')
>>> from dap.server import SimpleHandler
>>> headers, output = SimpleHandler(dataset).dds()
>>> print ''.join(output)
Dataset {
Int32 array[2][3];
} foo;
<BLANKLINE>
>>> print dataset2['array'].data
[[1 2 3]
[4 5 6]]
But we request only part of it:
>>> dataset2 = constrain(dataset, 'array[0:1:1][0:1:1]')
>>> headers, output = SimpleHandler(dataset2).dds()
>>> print ''.join(output)
Dataset {
Int32 array[2][2];
} foo;
<BLANKLINE>
>>> print dataset2['array'].data
[[1 2]
[4 5]]
The same is valid for grids:
>>> dataset['grid'] = GridType(name='grid')
>>> data = array([1,2,3,4,5,6])
>>> data.shape = (2,3)
>>> dataset['grid'].array = ArrayType(name='grid', data=data, shape=(2,3), dimensions=('x', 'y'))
>>> dataset['grid'].maps['x'] = ArrayType(name='x', data=array([1,2]), shape=(2,))
>>> dataset['grid'].maps['y'] = ArrayType(name='y', data=array([1,2,3]), shape=(3,))
>>> dataset._set_id()
>>> headers, output = SimpleHandler(dataset).dds()
>>> print ''.join(output)
Dataset {
Int32 array[2][3];
Grid {
Array:
Int32 grid[x = 2][y = 3];
Maps:
Int32 x[x = 2];
Int32 y[y = 3];
} grid;
} foo;
<BLANKLINE>
>>> dataset2 = constrain(dataset, 'grid[0:1:0][0:1:0]')
>>> headers, output = SimpleHandler(dataset2).dds()
>>> print ''.join(output)
Dataset {
Grid {
Array:
Int32 grid[x = 1][y = 1];
Maps:
Int32 x[x = 1];
Int32 y[y = 1];
} grid;
} foo;
<BLANKLINE>
>>> headers, output = SimpleHandler(dataset2).ascii()
>>> print ''.join(output)
Dataset {
Grid {
Array:
Int32 grid[x = 1][y = 1];
Maps:
Int32 x[x = 1];
Int32 y[y = 1];
} grid;
} foo;
---------------------------------------------
grid.grid
[0][0] 1
<BLANKLINE>
grid.x
[0] 1
<BLANKLINE>
grid.y
[0] 1
<BLANKLINE>
<BLANKLINE>
<BLANKLINE>
<BLANKLINE>
Selecting a map from a Grid should return a structure:
>>> dataset3 = constrain(dataset, 'grid.x')
>>> headers, output = SimpleHandler(dataset3).dds()
>>> print ''.join(output)
Dataset {
Structure {
Int32 x[x = 2];
} grid;
} foo;
<BLANKLINE>
Short notation also works:
>>> dataset3 = constrain(dataset, 'x')
>>> headers, output = SimpleHandler(dataset3).dds()
>>> print ''.join(output)
Dataset {
Structure {
Int32 x[x = 2];
} grid;
} foo;
<BLANKLINE>
It also works with Sequences:
>>> dataset = DatasetType(name='foo')
>>> dataset['seq'] = SequenceType(name='seq')
>>> dataset['seq']['a'] = BaseType(name='a')
>>> dataset['seq']['b'] = BaseType(name='b')
>>> dataset['seq']['a'].data = range(5)
>>> dataset['seq']['b'].data = range(5,10)
>>> for i in dataset['seq'].data:
... print i
(0, 5)
(1, 6)
(2, 7)
(3, 8)
(4, 9)
>>> dataset2 = constrain(dataset, 'seq.a')
>>> for i in dataset2['seq'].data:
... print i
(0,)
(1,)
(2,)
(3,)
(4,)
>>> dataset2 = constrain(dataset, 'seq.b')
>>> for i in dataset2['seq'].data:
... print i
(5,)
(6,)
(7,)
(8,)
(9,)
>>> dataset2 = constrain(dataset, 'seq.b,seq.a')
>>> for i in dataset2['seq'].data:
... print i
(5, 0)
(6, 1)
(7, 2)
(8, 3)
(9, 4)
The function also parses selection expressions. Let's create a
dataset with sequential data:
>>> dataset = DatasetType(name='foo')
>>> dataset['seq'] = SequenceType(name='seq')
>>> dataset['seq']['index'] = BaseType(name='index', type='Int32')
>>> dataset['seq']['index'].data = [10, 11, 12, 13]
>>> dataset['seq']['temperature'] = BaseType(name='temperature', type='Float32')
>>> dataset['seq']['temperature'].data = [17.2, 15.1, 15.3, 15.1]
>>> dataset['seq']['site'] = BaseType(name='site', type='String')
>>> dataset['seq']['site'].data = ['Diamond_St', 'Blacktail_Loop', 'Platinum_St', 'Kodiak_Trail']
Here's the data:
>>> for i in dataset['seq'].data:
... print i
(10, 17.199999999999999, 'Diamond_St')
(11, 15.1, 'Blacktail_Loop')
(12, 15.300000000000001, 'Platinum_St')
(13, 15.1, 'Kodiak_Trail')
Now suppose we only want data where ``index`` is greater than 11:
>>> dataset2 = constrain(dataset, 'seq&seq.index>11')
>>> for i in dataset2['seq'].data:
... print i
(12, 15.300000000000001, 'Platinum_St')
(13, 15.1, 'Kodiak_Trail')
We can request only a few variables:
>>> dataset2 = constrain(dataset, 'seq.site&seq.index>11')
>>> for i in dataset2['seq'].data:
... print i
('Platinum_St',)
('Kodiak_Trail',)
A few more tests:
>>> dataset = DatasetType(name='foo')
>>> dataset['a'] = StructureType(name='a')
>>> dataset['a']['shn'] = BaseType(name='shn')
>>> dataset['b'] = StructureType(name='b')
>>> dataset['b']['shn'] = BaseType(name='shn')
>>> dataset2 = constrain(dataset, 'a.shn')
>>> print dataset2 #doctest: +ELLIPSIS
{'a': {'shn': <dap.dtypes.BaseType object at ...>}}
>>> dataset3 = constrain(dataset, 'shn')
Traceback (most recent call last):
...
ConstraintExpressionError: 'Ambiguous shorthand notation request: shn'
>>> dataset['shn'] = BaseType(name='shn')
>>> dataset3 = constrain(dataset, 'shn')
>>> print dataset3 #doctest: +ELLIPSIS
{'shn': <dap.dtypes.BaseType object at 0x1746290>}
"""
# Parse constraints.
fields, queries = parse_querystring(constraints)
# Ids and names are used to check that requests made using the
# shorthand notation are not ambiguous. Used names are stored to
# make sure that at most only a single variables is returned from
# a given name.
ids = [var.id for var in walk(dataset)]
names = []
new = DatasetType(name=dataset.name, attributes=dataset.attributes.copy())
new = build(dataset, new, fields, queries, ids, names)
return new
def build(dapvar, new, fields, queries, ids, names):
vars_ = fields.keys()
order = []
for var in dapvar.walk():
# Make a copy of the variable, so that later we can possibly add it
# to the dataset we're building (that's why it's a candidate).
candidate = copy.deepcopy(var)
# We first filter the data in sequences. This has to be done
# before variables are removed, since we can select values based
# on conditions on *other* variables. Eg: seq.a where seq.b > 1
if queries and isinstance(candidate, SequenceType):
# Filter candidate on the server-side, since the data may be
# proxied using ``dap.proxy.Proxy``.
candidate = candidate.filter(*queries)
# And then filter on the client side.
candidate = filter_(candidate, queries)
# If the variable was requested, either by id or name, or if no
# variables were requested, we simply add this candidate to the
# dataset we're building.
if not vars_ or candidate.id in vars_ or (candidate.name in vars_ and candidate.name not in ids):
new[candidate.name] = candidate
# Check if requests done using shn are not ambiguous.
if vars_ and candidate.id not in vars_: # request by shn
if candidate.name in names:
raise ConstraintExpressionError("Ambiguous shorthand notation request: %s" % candidate.name)
names.append(candidate.name)
# We also need to store the order in which the variables were
# requested. Later, we'll rearrange the variables in our built
# dataset in the correct order.
if vars_:
if candidate.id in vars_: index = vars_.index(candidate.id)
else: index = vars_.index(candidate.name)
order.append((index, candidate.name))
# If the variable was not requested, but it's a constructor, it's
# possible that one of its children has been requested. We apply
# the algorithm recursively on the variable.
elif not isinstance(var, BaseType):
# We clear the candidate after storing a copy with the filtered
# data and children. We will then append the requested children
# to the cleared candidate.
ccopy = copy.deepcopy(candidate)
if isinstance(candidate, StructureType):
candidate.clear()
else:
# If the variable is a grid we should return it as a
# structure with the requested fields.
parent = candidate._id[:-len(candidate.name)-1]
candidate = StructureType(name=candidate.name, attributes=candidate.attributes.copy())
candidate._set_id(parent)
# Check for requested children.
candidate = build(ccopy, candidate, fields, queries, ids, names)
# If the candidate has any keys, ie, stored variables, we add
# it to the dataset we are building.
if candidate.keys(): new[candidate.name] = candidate
# Check if we need to apply a slice in the variable.
slice_ = fields.get(candidate.id) or fields.get(candidate.name)
if slice_: candidate = slicevar(candidate, slice_)
# Sort variables according to order of requested variables.
if len(order) > 1:
order.sort()
new._keys = [item[1] for item in order]
return new
def filter_(dapvar, queries):
# Get only the queries related to this variable.
queries_ = [q for q in queries if q.startswith(dapvar.id)]
if queries_:
# Build the filter and apply it to the data.
ids = [var.id for var in dapvar.values()]
f = buildfilter(queries_, ids)
data = itertools.ifilter(f, dapvar.data)
# Set the data in the stored variables.
data = list(data)
dapvar.data = data
return dapvar
def slicevar(dapvar, slice_):
if slice_ != (slice(None),):
dapvar.data = dapvar.data[slice_]
try:
dapvar.shape = getattr(dapvar.data, 'shape', (len(dapvar.data),))
except TypeError:
pass
if isinstance(dapvar, GridType):
if not isiterable(slice_): slice_ = (slice_,)
# Slice the maps.
for map_,mapslice in zip(dapvar.maps.values(), slice_):
map_.data = map_.data[mapslice]
map_.shape = map_.data.shape
return dapvar
def order(dataset, fields):
"""
Order a given dataset according to the requested order.
>>> d = DatasetType(name='d')
>>> d['a'] = BaseType(name='a')
>>> d['b'] = BaseType(name='b')
>>> d['c'] = SequenceType(name='c')
>>> d['c']['d'] = BaseType(name='d')
>>> d['c']['e'] = BaseType(name='e')
>>> print order(d, 'b,c.e,c.d,a'.split(',')) #doctest: +ELLIPSIS
{'b': <dap.dtypes.BaseType object at ...>, 'c': {'e': <dap.dtypes.BaseType object at ...>, 'd': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>}
>>> print order(d, 'c.e,c.d,a'.split(',')) #doctest: +ELLIPSIS
{'c': {'e': <dap.dtypes.BaseType object at ...>, 'd': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>, 'b': <dap.dtypes.BaseType object at ...>}
>>> print order(d, 'b,c,a'.split(',')) #doctest: +ELLIPSIS
{'b': <dap.dtypes.BaseType object at ...>, 'c': {'d': <dap.dtypes.BaseType object at ...>, 'e': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>}
"""
# Order the dataset.
dataset = copy.copy(dataset)
orders = []
n = len(dataset._keys)
for var in dataset.walk():
# Search for id first.
fields_ = [field[:len(var.id)] for field in fields]
if var.id in fields_: index = fields_.index(var.id)
# Else search by name.
elif var.name in fields: index = fields.index(var.name)
# Else preserve original order.
else: index = n + dataset._keys.index(var.name)
orders.append((index, var.name))
# Sort children.
if isinstance(var, StructureType):
dataset[var.name] = order(var, fields)
# Sort dataset.
if len(orders) > 1:
orders.sort()
dataset._keys = [item[1] for item in orders]
return dataset
def walk(dapvar):
"""
Iterate over all variables, including dapvar.
"""
yield dapvar
try:
for child in dapvar.walk():
for var in walk(child): yield var
except:
pass
def getslice(hyperslab, shape=None):
"""Parse a hyperslab.
Parse a hyperslab to a slice according to variable shape. The hyperslab
follows the DAP specification, and ommited dimensions are returned in
their entirety.
>>> getslice('[0:1:2][0:1:2]')
(slice(0, 3, 1), slice(0, 3, 1))
>>> getslice('[0:2][0:2]')
(slice(0, 3, 1), slice(0, 3, 1))
>>> getslice('[0][2]')
(slice(0, 1, 1), slice(2, 3, 1))
>>> getslice('[0:1:1]')
(slice(0, 2, 1),)
>>> getslice('[0:2:1]')
(slice(0, 2, 2),)
>>> getslice('')
(slice(None, None, None),)
"""
# Backwards compatibility. In pydap <= 2.2.3 the ``fields`` dict from
# helper.parse_querystring returned the slices as strings (instead of
# Python slices). These strings had to be passed to getslice to get a
# Python slice. Old plugins still do this, but with pydap >= 2.2.4
# they are already passing the slices, so we simply return them.
if not isinstance(hyperslab, basestring): return hyperslab or slice(None)
if hyperslab:
output = []
dimslices = hyperslab[1:-1].split('][')
for dimslice in dimslices:
start, size, step = _getsize(dimslice)
output.append(slice(start, start+size, step))
output = tuple(output)
else:
output = (slice(None),)
return output
def _getsize(dimslice):
"""Parse a dimension from a hyperslab.
Calculates the start, size and step from a DAP formatted hyperslab.
>>> _getsize('0:1:9')
(0, 10, 1)
>>> _getsize('0:2:9')
(0, 10, 2)
>>> _getsize('0')
(0, 1, 1)
>>> _getsize('0:9')
(0, 10, 1)
"""
size = dimslice.split(':')
start = int(size[0])
if len(size) == 1:
stop = start
step = 1
elif len(size) == 2:
stop = int(size[1])
step = 1
elif len(size) == 3:
step = int(size[1])
stop = int(size[2])
else:
raise ConstraintExpressionError('Invalid hyperslab: %s.' % dimslice)
size = (stop-start) + 1
return start, size, step
def buildfilter(queries, vars_):
"""This function is a filter builder.
Given a list of DAP formatted queries and a list of variable names,
this function returns a dynamic filter function to filter rows.
From the example in the DAP specification:
>>> vars_ = ['index', 'temperature', 'site']
>>> data = []
>>> data.append([10, 17.2, 'Diamond_St'])
>>> data.append([11, 15.1, 'Blacktail_Loop'])
>>> data.append([12, 15.3, 'Platinum_St'])
>>> data.append([13, 15.1, 'Kodiak_Trail'])
Rows where index is greater-than-or-equal 11:
>>> f = buildfilter(['index>=11'], vars_)
>>> for line in itertools.ifilter(f, data):
... print line
[11, 15.1, 'Blacktail_Loop']
[12, 15.300000000000001, 'Platinum_St']
[13, 15.1, 'Kodiak_Trail']
Rows where site ends with '_St':
>>> f = buildfilter(['site=~".*_St"'], vars_)
>>> for line in itertools.ifilter(f, data):
... print line
[10, 17.199999999999999, 'Diamond_St']
[12, 15.300000000000001, 'Platinum_St']
Index greater-or-equal-than 11 AND site ends with '_St':
>>> f = buildfilter(['site=~".*_St"', 'index>=11'], vars_)
>>> for line in itertools.ifilter(f, data):
... print line
[12, 15.300000000000001, 'Platinum_St']
Site is either 'Diamond_St' OR 'Blacktail_Loop':
>>> f = buildfilter(['site={"Diamond_St", "Blacktail_Loop"}'], vars_)
>>> for line in itertools.ifilter(f, data):
... print line
[10, 17.199999999999999, 'Diamond_St']
[11, 15.1, 'Blacktail_Loop']
Index is either 10 OR 12:
>>> f = buildfilter(['index={10, 12}'], vars_)
>>> for line in itertools.ifilter(f, data):
... print line
[10, 17.199999999999999, 'Diamond_St']
[12, 15.300000000000001, 'Platinum_St']
Python is great, isn't it? :)
"""
filters = []
p = re.compile(r'''^ # Start of selection
{? # Optional { for multi-valued constants
(?P<var1>.*?) # Anything
}? # Closing }
(?P<op><=|>=|!=|=~|>|<|=) # Operators
{? # {
(?P<var2>.*?) # Anything
}? # }
$ # EOL
''', re.VERBOSE)
for query in queries:
m = p.match(query)
if not m: raise ConstraintExpressionError('Invalid constraint expression: %s.' % query)
# Functions associated with each operator.
op = {'<' : operator.lt,
'>' : operator.gt,
'!=': operator.ne,
'=' : operator.eq,
'>=': operator.ge,
'<=': operator.le,
'=~': lambda a,b: re.match(b,a),
}[m.group('op')]
# Allow multiple comparisons in one line. Python rulez!
op = multicomp(op)
# Build the filter for the first variable.
if m.group('var1') in vars_:
i = vars_.index(m.group('var1'))
var1 = lambda L, i=i: operator.getitem(L, i)
# Build the filter for the second variable. It could be either
# a name or a constant.
if m.group('var2') in vars_:
i = vars_.index(m.group('var2'))
var2 = lambda L, i=i: operator.getitem(L, i)
else:
var2 = lambda x, m=m: expr_eval(m.group('var2'))
# This is the filter. We apply the function (op) to the variable
# filters (var1 and var2).
filter0 = lambda x, op=op, var1=var1, var2=var2: op(var1(x), var2(x))
filters.append(filter0)
if filters:
# We have to join all the filters that were built, using the AND
# operator. Believe me, this line does exactly that.
#
# You are not expected to understand this.
filter0 = lambda i: reduce(lambda x,y: x and y, [f(i) for f in filters])
else:
filter0 = bool
return filter0
def multicomp(function):
"""Multiple OR comparisons.
Given f(a,b), this function returns a new function g(a,b) which
performs multiple OR comparisons if b is a tuple.
>>> a = 1
>>> b = (0, 1, 2)
>>> operator.lt = multicomp(operator.lt)
>>> operator.lt(a, b)
True
"""
def f(a, b):
if isinstance(b, tuple):
for i in b:
# Return True if any comparison is True.
if function(a, i): return True
return False
else:
return function(a, b)
return f
def fix_slice(dims, index):
"""Fix incomplete slices or slices with ellipsis.
The behaviour of this function was reversed-engineered from numpy.
>>> fix_slice(3, (0, Ellipsis, 0))
(0, slice(None, None, None), 0)
>>> fix_slice(4, (0, Ellipsis, 0))
(0, slice(None, None, None), slice(None, None, None), 0)
>>> fix_slice(4, (0, 0, Ellipsis, 0))
(0, 0, slice(None, None, None), 0)
>>> fix_slice(5, (0, Ellipsis, 0))
(0, slice(None, None, None), slice(None, None, None), slice(None, None, None), 0)
>>> fix_slice(5, (0, 0, Ellipsis, 0))
(0, 0, slice(None, None, None), slice(None, None, None), 0)
>>> fix_slice(5, (0, Ellipsis, 0, Ellipsis))
(0, slice(None, None, None), slice(None, None, None), 0, slice(None, None, None))
>>> fix_slice(4, slice(None, None, None))
(slice(None, None, None), slice(None, None, None), slice(None, None, None), slice(None, None, None))
>>> fix_slice(4, (slice(None, None, None), 0))
(slice(None, None, None), 0, slice(None, None, None), slice(None, None, None))
"""
if not isinstance(index, tuple): index = (index,)
out = []
length = len(index)
for slice_ in index:
if slice_ is Ellipsis:
out.extend([slice(None)] * (dims - length + 1))
length += (dims - length)
else:
out.append(slice_)
index = tuple(out)
if len(index) < dims:
index += (slice(None),) * (dims - len(index))
return index
def lenslice(slice_):
"""
Return the number of values associated with a slice.
By Bob Drach.
"""
step = slice_.step
if step is None: step = 1
if step > 0:
start = slice_.start
stop = slice_.stop
else:
start = slice_.stop
stop = slice_.start
step = -step
return ((stop-start-1)/step + 1)
def parse_querystring(query):
"""
Parse a query_string returning the requested variables, dimensions, and CEs.
>>> parse_querystring('a,b')
({'a': (slice(None, None, None),), 'b': (slice(None, None, None),)}, [])
>>> parse_querystring('a[0],b[1]')
({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, [])
>>> parse_querystring('a[0],b[1]&foo.bar>1')
({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, ['foo.bar>1'])
>>> parse_querystring('a[0],b[1]&foo.bar>1&LAYERS=SST')
({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, ['foo.bar>1', 'LAYERS=SST'])
>>> parse_querystring('foo.bar>1&LAYERS=SST')
({}, ['foo.bar>1', 'LAYERS=SST'])
"""
if query is None: return {}, []
query = unquote(query)
constraints = query.split('&')
# Check if the first item is either a list of variables (projection)
# or a selection.
relops = ['<', '<=', '>', '>=', '=', '!=',' =~']
for relop in relops:
if relop in constraints[0]:
vars_ = []
queries = constraints[:]
break
else:
vars_ = constraints[0].split(',')
queries = constraints[1:]
fields = odict()
p = re.compile(r'(?P<name>[^[]+)(?P<shape>(\[[^\]]+\])*)')
for var in vars_:
if var:
# Check if the var has a slice.
c = p.match(var).groupdict()
id_ = quote(c['name'])
fields[id_] = getslice(c['shape'])
return fields, queries
def escape_dods(dods, pad=''):
"""
Escape a DODS response.
This is useful for debugging. You're probably spending too much time
with pydap if you need to use this.
"""
if 'Data:\n' in dods:
index = dods.index('Data:\n') + len('Data:\n')
else:
index = 0
dds = dods[:index]
dods = dods[index:]
out = []
for i, char in enumerate(dods):
char = hex(ord(char))
char = char.replace('0x', '\\x')
if len(char) < 4: char = char.replace('\\x', '\\x0')
out.append(char)
if pad and (i%4 == 3): out.append(pad)
out = ''.join(out)
out = out.replace(r'\x5a\x00\x00\x00', '<start of sequence>')
out = out.replace(r'\xa5\x00\x00\x00', '<end of sequence>\n')
return dds + out
def _test():
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
|