This file is indexed.

/usr/share/pyshared/dap/helper.py is in python-dap 2.2.6.7-1+deb7u1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
"""Helper functions.

These are generic functions used mostly for writing plugins.
"""

__author__ = "Roberto De Almeida <rob@pydap.org>"

import sys
import re
import operator
import itertools
import copy
from urllib import quote, unquote

from dap.dtypes import *
from dap.dtypes import _basetypes
from dap.exceptions import ConstraintExpressionError
from dap.lib import isiterable
from dap.util.safeeval import expr_eval
from dap.util.ordereddict import odict


def constrain(dataset, constraints):
    """A simple example. We create a dataset holding three variables:

        >>> dataset = DatasetType(name='foo')
        >>> dataset['a'] = BaseType(name='a', type='Byte')
        >>> dataset['b'] = BaseType(name='b', type='Byte')
        >>> dataset['c'] = BaseType(name='c', type='Byte')

    Now we give it a CE requesting only the variables ``a`` and ``b``:
    
        >>> dataset2 = constrain(dataset, 'a,b')
        >>> print dataset2  #doctest: +ELLIPSIS
        {'a': <dap.dtypes.BaseType object at ...>, 'b': <dap.dtypes.BaseType object at ...>}

    We can also request the variables in a different order:

        >>> dataset2 = constrain(dataset, 'b,a')
        >>> print dataset2  #doctest: +ELLIPSIS
        {'b': <dap.dtypes.BaseType object at ...>, 'a': <dap.dtypes.BaseType object at ...>}

    Another example. A dataset with two structures ``a`` and ``b``:

        >>> dataset = DatasetType(name='foo')
        >>> dataset['a'] = StructureType(name='a')
        >>> dataset['a']['a1'] = BaseType(name='a1', type='Byte')
        >>> dataset['b'] = StructureType(name='b')
        >>> dataset['b']['b1'] = BaseType(name='b1', type='Byte')
        >>> dataset['b']['b2'] = BaseType(name='b2', type='Byte')

    If we request the structure ``b`` we should get it complete:

        >>> dataset2 = constrain(dataset, 'a.a1,b')
        >>> print dataset2  #doctest: +ELLIPSIS
        {'a': {'a1': <dap.dtypes.BaseType object at ...>}, 'b': {'b1': <dap.dtypes.BaseType object at ...>, 'b2': <dap.dtypes.BaseType object at ...>}}

        >>> dataset2 = constrain(dataset, 'b.b1')
        >>> print dataset2  #doctest: +ELLIPSIS
        {'b': {'b1': <dap.dtypes.BaseType object at ...>}}

    Arrays can be sliced. Here we have a ``(2,3)`` array:

        >>> dataset = DatasetType(name='foo')
        >>> from numpy import array
        >>> data = array([1,2,3,4,5,6])
        >>> data.shape = (2,3)
        >>> dataset['array'] = ArrayType(data=data, name='array', shape=(2,3), type='Int32')
        >>> dataset2 = constrain(dataset, 'array')
        >>> from dap.server import SimpleHandler
        >>> headers, output = SimpleHandler(dataset).dds()
        >>> print ''.join(output)
        Dataset {
            Int32 array[2][3];
        } foo;
        <BLANKLINE>
        >>> print dataset2['array'].data
        [[1 2 3]
         [4 5 6]]

    But we request only part of it:

        >>> dataset2 = constrain(dataset, 'array[0:1:1][0:1:1]')
        >>> headers, output = SimpleHandler(dataset2).dds()
        >>> print ''.join(output)
        Dataset {
            Int32 array[2][2];
        } foo;
        <BLANKLINE>
        >>> print dataset2['array'].data
        [[1 2]
         [4 5]]

    The same is valid for grids:

        >>> dataset['grid'] = GridType(name='grid') 
        >>> data = array([1,2,3,4,5,6])
        >>> data.shape = (2,3)
        >>> dataset['grid'].array  = ArrayType(name='grid', data=data, shape=(2,3), dimensions=('x', 'y'))
        >>> dataset['grid'].maps['x'] = ArrayType(name='x', data=array([1,2]), shape=(2,))
        >>> dataset['grid'].maps['y'] = ArrayType(name='y', data=array([1,2,3]), shape=(3,))
        >>> dataset._set_id()
        >>> headers, output = SimpleHandler(dataset).dds()
        >>> print ''.join(output)
        Dataset {
            Int32 array[2][3];
            Grid {
                Array:
                    Int32 grid[x = 2][y = 3];
                Maps:
                    Int32 x[x = 2];
                    Int32 y[y = 3];
            } grid;
        } foo;
        <BLANKLINE>
        >>> dataset2 = constrain(dataset, 'grid[0:1:0][0:1:0]')
        >>> headers, output = SimpleHandler(dataset2).dds()
        >>> print ''.join(output)
        Dataset {
            Grid {
                Array:
                    Int32 grid[x = 1][y = 1];
                Maps:
                    Int32 x[x = 1];
                    Int32 y[y = 1];
            } grid;
        } foo;
        <BLANKLINE>
        >>> headers, output = SimpleHandler(dataset2).ascii()
        >>> print ''.join(output)
        Dataset {
            Grid {
                Array:
                    Int32 grid[x = 1][y = 1];
                Maps:
                    Int32 x[x = 1];
                    Int32 y[y = 1];
            } grid;
        } foo;
        ---------------------------------------------
        grid.grid
        [0][0] 1
        <BLANKLINE>
        grid.x
        [0] 1
        <BLANKLINE>
        grid.y
        [0] 1
        <BLANKLINE>
        <BLANKLINE>
        <BLANKLINE>
        <BLANKLINE>

    Selecting a map from a Grid should return a structure:

        >>> dataset3 = constrain(dataset, 'grid.x')
        >>> headers, output = SimpleHandler(dataset3).dds()
        >>> print ''.join(output)
        Dataset {
            Structure {
                Int32 x[x = 2];
            } grid;
        } foo;
        <BLANKLINE>

    Short notation also works:

        >>> dataset3 = constrain(dataset, 'x')
        >>> headers, output = SimpleHandler(dataset3).dds()
        >>> print ''.join(output)
        Dataset {
            Structure {
                Int32 x[x = 2];
            } grid;
        } foo;
        <BLANKLINE>

    It also works with Sequences:

        >>> dataset = DatasetType(name='foo')
        >>> dataset['seq'] = SequenceType(name='seq')
        >>> dataset['seq']['a'] = BaseType(name='a')
        >>> dataset['seq']['b'] = BaseType(name='b')
        >>> dataset['seq']['a'].data = range(5)
        >>> dataset['seq']['b'].data = range(5,10)
        >>> for i in dataset['seq'].data:
        ...     print i
        (0, 5)
        (1, 6)
        (2, 7)
        (3, 8)
        (4, 9)
        >>> dataset2 = constrain(dataset, 'seq.a')
        >>> for i in dataset2['seq'].data:
        ...     print i
        (0,)
        (1,)
        (2,)
        (3,)
        (4,)
        >>> dataset2 = constrain(dataset, 'seq.b')
        >>> for i in dataset2['seq'].data:
        ...     print i
        (5,)
        (6,)
        (7,)
        (8,)
        (9,)
        >>> dataset2 = constrain(dataset, 'seq.b,seq.a')
        >>> for i in dataset2['seq'].data:
        ...     print i
        (5, 0)
        (6, 1)
        (7, 2)
        (8, 3)
        (9, 4)

    The function also parses selection expressions. Let's create a
    dataset with sequential data:

        >>> dataset = DatasetType(name='foo')
        >>> dataset['seq'] = SequenceType(name='seq')
        >>> dataset['seq']['index'] = BaseType(name='index', type='Int32')
        >>> dataset['seq']['index'].data = [10, 11, 12, 13]
        >>> dataset['seq']['temperature'] = BaseType(name='temperature', type='Float32')
        >>> dataset['seq']['temperature'].data = [17.2, 15.1, 15.3, 15.1]
        >>> dataset['seq']['site'] = BaseType(name='site', type='String')
        >>> dataset['seq']['site'].data = ['Diamond_St', 'Blacktail_Loop', 'Platinum_St', 'Kodiak_Trail']

    Here's the data:

        >>> for i in dataset['seq'].data:
        ...     print i
        (10, 17.199999999999999, 'Diamond_St')
        (11, 15.1, 'Blacktail_Loop')
        (12, 15.300000000000001, 'Platinum_St')
        (13, 15.1, 'Kodiak_Trail')

    Now suppose we only want data where ``index`` is greater than 11:

        >>> dataset2 = constrain(dataset, 'seq&seq.index>11')
        >>> for i in dataset2['seq'].data:
        ...     print i
        (12, 15.300000000000001, 'Platinum_St')
        (13, 15.1, 'Kodiak_Trail')

    We can request only a few variables:

        >>> dataset2 = constrain(dataset, 'seq.site&seq.index>11')
        >>> for i in dataset2['seq'].data:
        ...     print i
        ('Platinum_St',)
        ('Kodiak_Trail',)

    A few more tests:

        >>> dataset = DatasetType(name='foo')
        >>> dataset['a'] = StructureType(name='a')
        >>> dataset['a']['shn'] = BaseType(name='shn')
        >>> dataset['b'] = StructureType(name='b')
        >>> dataset['b']['shn'] = BaseType(name='shn')
        >>> dataset2 = constrain(dataset, 'a.shn')
        >>> print dataset2  #doctest: +ELLIPSIS
        {'a': {'shn': <dap.dtypes.BaseType object at ...>}}
        >>> dataset3 = constrain(dataset, 'shn')
        Traceback (most recent call last):
        ...
        ConstraintExpressionError: 'Ambiguous shorthand notation request: shn'
        >>> dataset['shn'] = BaseType(name='shn')
        >>> dataset3 = constrain(dataset, 'shn')
        >>> print dataset3  #doctest: +ELLIPSIS
        {'shn': <dap.dtypes.BaseType object at 0x1746290>}
    """
    # Parse constraints.
    fields, queries = parse_querystring(constraints)

    # Ids and names are used to check that requests made using the 
    # shorthand notation are not ambiguous. Used names are stored to
    # make sure that at most only a single variables is returned from
    # a given name.
    ids = [var.id for var in walk(dataset)]
    names = []
    
    new = DatasetType(name=dataset.name, attributes=dataset.attributes.copy())
    new = build(dataset, new, fields, queries, ids, names)

    return new


def build(dapvar, new, fields, queries, ids, names):
    vars_ = fields.keys()
    order = []
    for var in dapvar.walk():
        # Make a copy of the variable, so that later we can possibly add it 
        # to the dataset we're building (that's why it's a candidate).
        candidate = copy.deepcopy(var)

        # We first filter the data in sequences. This has to be done 
        # before variables are removed, since we can select values based
        # on conditions on *other* variables. Eg: seq.a where seq.b > 1
        if queries and isinstance(candidate, SequenceType):
            # Filter candidate on the server-side, since the data may be 
            # proxied using ``dap.proxy.Proxy``.
            candidate = candidate.filter(*queries)
            # And then filter on the client side.
            candidate = filter_(candidate, queries)
        
        # If the variable was requested, either by id or name, or if no
        # variables were requested, we simply add this candidate to the
        # dataset we're building.
        if not vars_ or candidate.id in vars_ or (candidate.name in vars_ and candidate.name not in ids):
            new[candidate.name] = candidate

            # Check if requests done using shn are not ambiguous.
            if vars_ and candidate.id not in vars_:  # request by shn
                if candidate.name in names:
                    raise ConstraintExpressionError("Ambiguous shorthand notation request: %s" % candidate.name)
                names.append(candidate.name)

            # We also need to store the order in which the variables were
            # requested. Later, we'll rearrange the variables in our built
            # dataset in the correct order.
            if vars_:
                if candidate.id in vars_: index = vars_.index(candidate.id)
                else: index = vars_.index(candidate.name)
                order.append((index, candidate.name))

        # If the variable was not requested, but it's a constructor, it's
        # possible that one of its children has been requested. We apply
        # the algorithm recursively on the variable.
        elif not isinstance(var, BaseType):
            # We clear the candidate after storing a copy with the filtered
            # data and children. We will then append the requested children
            # to the cleared candidate.
            ccopy = copy.deepcopy(candidate)
            if isinstance(candidate, StructureType): 
                candidate.clear()
            else: 
                # If the variable is a grid we should return it as a 
                # structure with the requested fields.
                parent = candidate._id[:-len(candidate.name)-1]
                candidate = StructureType(name=candidate.name, attributes=candidate.attributes.copy())
                candidate._set_id(parent)

            # Check for requested children.
            candidate = build(ccopy, candidate, fields, queries, ids, names)

            # If the candidate has any keys, ie, stored variables, we add
            # it to the dataset we are building.
            if candidate.keys(): new[candidate.name] = candidate

        # Check if we need to apply a slice in the variable.
        slice_ = fields.get(candidate.id) or fields.get(candidate.name)
        if slice_: candidate = slicevar(candidate, slice_)
                
    # Sort variables according to order of requested variables.
    if len(order) > 1:
        order.sort()
        new._keys = [item[1] for item in order]
    
    return new


def filter_(dapvar, queries):
    # Get only the queries related to this variable.
    queries_ = [q for q in queries if q.startswith(dapvar.id)]
    if queries_:
        # Build the filter and apply it to the data.
        ids = [var.id for var in dapvar.values()]
        f = buildfilter(queries_, ids)
        data = itertools.ifilter(f, dapvar.data)

        # Set the data in the stored variables.
        data = list(data)
        dapvar.data = data

    return dapvar 


def slicevar(dapvar, slice_):
    if slice_ != (slice(None),):
        dapvar.data = dapvar.data[slice_]

    try:
        dapvar.shape = getattr(dapvar.data, 'shape', (len(dapvar.data),))
    except TypeError:
        pass

    if isinstance(dapvar, GridType):
        if not isiterable(slice_): slice_ = (slice_,)

        # Slice the maps.
        for map_,mapslice in zip(dapvar.maps.values(), slice_):
            map_.data = map_.data[mapslice]
            map_.shape = map_.data.shape

    return dapvar


def order(dataset, fields):
    """
    Order a given dataset according to the requested order.

        >>> d = DatasetType(name='d')
        >>> d['a'] = BaseType(name='a')
        >>> d['b'] = BaseType(name='b')
        >>> d['c'] = SequenceType(name='c')
        >>> d['c']['d'] = BaseType(name='d')
        >>> d['c']['e'] = BaseType(name='e')
        >>> print order(d, 'b,c.e,c.d,a'.split(','))  #doctest: +ELLIPSIS
        {'b': <dap.dtypes.BaseType object at ...>, 'c': {'e': <dap.dtypes.BaseType object at ...>, 'd': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>}
        >>> print order(d, 'c.e,c.d,a'.split(','))  #doctest: +ELLIPSIS
        {'c': {'e': <dap.dtypes.BaseType object at ...>, 'd': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>, 'b': <dap.dtypes.BaseType object at ...>}
        >>> print order(d, 'b,c,a'.split(','))  #doctest: +ELLIPSIS
        {'b': <dap.dtypes.BaseType object at ...>, 'c': {'d': <dap.dtypes.BaseType object at ...>, 'e': <dap.dtypes.BaseType object at ...>}, 'a': <dap.dtypes.BaseType object at ...>}
    """
    # Order the dataset.
    dataset = copy.copy(dataset)
    orders = []
    n = len(dataset._keys)
    for var in dataset.walk():
        # Search for id first.
        fields_ = [field[:len(var.id)] for field in fields]
        if var.id in fields_: index = fields_.index(var.id)
        # Else search by name.
        elif var.name in fields: index = fields.index(var.name)
        # Else preserve original order.
        else: index = n + dataset._keys.index(var.name)
        orders.append((index, var.name))

        # Sort children.
        if isinstance(var, StructureType):
            dataset[var.name] = order(var, fields)

    # Sort dataset.
    if len(orders) > 1:
        orders.sort()
        dataset._keys = [item[1] for item in orders]

    return dataset


def walk(dapvar):
    """
    Iterate over all variables, including dapvar.
    """
    yield dapvar
    try:
        for child in dapvar.walk():
            for var in walk(child): yield var
    except:
        pass


def getslice(hyperslab, shape=None):
    """Parse a hyperslab.

    Parse a hyperslab to a slice according to variable shape. The hyperslab
    follows the DAP specification, and ommited dimensions are returned in 
    their entirety.

        >>> getslice('[0:1:2][0:1:2]')
        (slice(0, 3, 1), slice(0, 3, 1))
        >>> getslice('[0:2][0:2]')
        (slice(0, 3, 1), slice(0, 3, 1))
        >>> getslice('[0][2]')
        (slice(0, 1, 1), slice(2, 3, 1))
        >>> getslice('[0:1:1]')
        (slice(0, 2, 1),)
        >>> getslice('[0:2:1]')
        (slice(0, 2, 2),)
        >>> getslice('')
        (slice(None, None, None),)
    """
    # Backwards compatibility. In pydap <= 2.2.3 the ``fields`` dict from 
    # helper.parse_querystring returned the slices as strings (instead of
    # Python slices). These strings had to be passed to getslice to get a 
    # Python slice. Old plugins still do this, but with pydap >= 2.2.4 
    # they are already passing the slices, so we simply return them.
    if not isinstance(hyperslab, basestring): return hyperslab or slice(None)

    if hyperslab:
        output = []
        dimslices = hyperslab[1:-1].split('][')
        for dimslice in dimslices:
            start, size, step = _getsize(dimslice)
            output.append(slice(start, start+size, step))
        output = tuple(output)
    else:
        output = (slice(None),)

    return output


def _getsize(dimslice):
    """Parse a dimension from a hyperslab.

    Calculates the start, size and step from a DAP formatted hyperslab.

        >>> _getsize('0:1:9')
        (0, 10, 1)
        >>> _getsize('0:2:9')
        (0, 10, 2)
        >>> _getsize('0')
        (0, 1, 1)
        >>> _getsize('0:9')
        (0, 10, 1)
    """
    size = dimslice.split(':')

    start = int(size[0])
    if len(size) == 1:
        stop = start
        step = 1
    elif len(size) == 2:
        stop = int(size[1])
        step = 1
    elif len(size) == 3:
        step = int(size[1])
        stop = int(size[2])
    else:
        raise ConstraintExpressionError('Invalid hyperslab: %s.' % dimslice)
    size = (stop-start) + 1
    
    return start, size, step


def buildfilter(queries, vars_):
    """This function is a filter builder.

    Given a list of DAP formatted queries and a list of variable names,
    this function returns a dynamic filter function to filter rows.

    From the example in the DAP specification:

        >>> vars_ = ['index', 'temperature', 'site']
        >>> data = []
        >>> data.append([10, 17.2, 'Diamond_St'])
        >>> data.append([11, 15.1, 'Blacktail_Loop'])
        >>> data.append([12, 15.3, 'Platinum_St'])
        >>> data.append([13, 15.1, 'Kodiak_Trail'])

    Rows where index is greater-than-or-equal 11:

        >>> f = buildfilter(['index>=11'], vars_)
        >>> for line in itertools.ifilter(f, data):
        ...     print line
        [11, 15.1, 'Blacktail_Loop']
        [12, 15.300000000000001, 'Platinum_St']
        [13, 15.1, 'Kodiak_Trail']

    Rows where site ends with '_St':

        >>> f = buildfilter(['site=~".*_St"'], vars_)
        >>> for line in itertools.ifilter(f, data):
        ...     print line
        [10, 17.199999999999999, 'Diamond_St']
        [12, 15.300000000000001, 'Platinum_St']

    Index greater-or-equal-than 11 AND site ends with '_St':

        >>> f = buildfilter(['site=~".*_St"', 'index>=11'], vars_)
        >>> for line in itertools.ifilter(f, data):
        ...     print line
        [12, 15.300000000000001, 'Platinum_St']

    Site is either 'Diamond_St' OR 'Blacktail_Loop':
    
        >>> f = buildfilter(['site={"Diamond_St", "Blacktail_Loop"}'], vars_)
        >>> for line in itertools.ifilter(f, data):
        ...     print line
        [10, 17.199999999999999, 'Diamond_St']
        [11, 15.1, 'Blacktail_Loop']

    Index is either 10 OR 12:

        >>> f = buildfilter(['index={10, 12}'], vars_)
        >>> for line in itertools.ifilter(f, data):
        ...     print line
        [10, 17.199999999999999, 'Diamond_St']
        [12, 15.300000000000001, 'Platinum_St']

    Python is great, isn't it? :)
    """
    filters = []
    p = re.compile(r'''^                          # Start of selection
                       {?                         # Optional { for multi-valued constants
                       (?P<var1>.*?)              # Anything
                       }?                         # Closing }
                       (?P<op><=|>=|!=|=~|>|<|=)  # Operators
                       {?                         # {
                       (?P<var2>.*?)              # Anything
                       }?                         # }
                       $                          # EOL
                    ''', re.VERBOSE)
    for query in queries:
        m = p.match(query)
        if not m: raise ConstraintExpressionError('Invalid constraint expression: %s.' % query)

        # Functions associated with each operator.
        op = {'<' : operator.lt,
              '>' : operator.gt,
              '!=': operator.ne,
              '=' : operator.eq,
              '>=': operator.ge,
              '<=': operator.le,
              '=~': lambda a,b: re.match(b,a),
             }[m.group('op')]
        # Allow multiple comparisons in one line. Python rulez!
        op = multicomp(op)

        # Build the filter for the first variable.
        if m.group('var1') in vars_:
            i = vars_.index(m.group('var1'))
            var1 = lambda L, i=i: operator.getitem(L, i)

            # Build the filter for the second variable. It could be either
            # a name or a constant.
            if m.group('var2') in vars_:
                i = vars_.index(m.group('var2'))
                var2 = lambda L, i=i: operator.getitem(L, i)
            else:
                var2 = lambda x, m=m: expr_eval(m.group('var2'))

            # This is the filter. We apply the function (op) to the variable
            # filters (var1 and var2).
            filter0 = lambda x, op=op, var1=var1, var2=var2: op(var1(x), var2(x))
            filters.append(filter0)

    if filters:
        # We have to join all the filters that were built, using the AND 
        # operator. Believe me, this line does exactly that.
        #
        # You are not expected to understand this.
        filter0 = lambda i: reduce(lambda x,y: x and y, [f(i) for f in filters])
    else:
        filter0 = bool

    return filter0


def multicomp(function):
    """Multiple OR comparisons.

    Given f(a,b), this function returns a new function g(a,b) which
    performs multiple OR comparisons if b is a tuple.

        >>> a = 1
        >>> b = (0, 1, 2)
        >>> operator.lt = multicomp(operator.lt)
        >>> operator.lt(a, b)
        True
    """
    def f(a, b):
        if isinstance(b, tuple):
            for i in b:
                # Return True if any comparison is True.
                if function(a, i): return True
            return False
        else:
            return function(a, b)

    return f


def fix_slice(dims, index):
    """Fix incomplete slices or slices with ellipsis.

    The behaviour of this function was reversed-engineered from numpy.

        >>> fix_slice(3, (0, Ellipsis, 0))
        (0, slice(None, None, None), 0)
        >>> fix_slice(4, (0, Ellipsis, 0))
        (0, slice(None, None, None), slice(None, None, None), 0)
        >>> fix_slice(4, (0, 0, Ellipsis, 0))
        (0, 0, slice(None, None, None), 0)
        >>> fix_slice(5, (0, Ellipsis, 0))
        (0, slice(None, None, None), slice(None, None, None), slice(None, None, None), 0)
        >>> fix_slice(5, (0, 0, Ellipsis, 0))
        (0, 0, slice(None, None, None), slice(None, None, None), 0)
        >>> fix_slice(5, (0, Ellipsis, 0, Ellipsis))
        (0, slice(None, None, None), slice(None, None, None), 0, slice(None, None, None))
        >>> fix_slice(4, slice(None, None, None))
        (slice(None, None, None), slice(None, None, None), slice(None, None, None), slice(None, None, None))
        >>> fix_slice(4, (slice(None, None, None), 0))
        (slice(None, None, None), 0, slice(None, None, None), slice(None, None, None))
    """
    if not isinstance(index, tuple): index = (index,)

    out = []
    length = len(index)
    for slice_ in index:
        if slice_ is Ellipsis:
            out.extend([slice(None)] * (dims - length + 1))
            length += (dims - length)
        else:
            out.append(slice_)
    index = tuple(out)

    if len(index) < dims:
        index += (slice(None),) * (dims - len(index))

    return index


def lenslice(slice_):
    """
    Return the number of values associated with a slice.
    
    By Bob Drach.
    """
    step = slice_.step
    if step is None: step = 1

    if step > 0:
        start = slice_.start
        stop = slice_.stop
    else:
        start = slice_.stop
        stop = slice_.start
        step = -step
    return ((stop-start-1)/step + 1)


def parse_querystring(query):
    """
    Parse a query_string returning the requested variables, dimensions, and CEs.

        >>> parse_querystring('a,b')
        ({'a': (slice(None, None, None),), 'b': (slice(None, None, None),)}, [])
        >>> parse_querystring('a[0],b[1]')
        ({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, [])
        >>> parse_querystring('a[0],b[1]&foo.bar>1')
        ({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, ['foo.bar>1'])
        >>> parse_querystring('a[0],b[1]&foo.bar>1&LAYERS=SST')
        ({'a': (slice(0, 1, 1),), 'b': (slice(1, 2, 1),)}, ['foo.bar>1', 'LAYERS=SST'])
        >>> parse_querystring('foo.bar>1&LAYERS=SST')
        ({}, ['foo.bar>1', 'LAYERS=SST'])

    """
    if query is None:  return {}, []

    query = unquote(query)
    constraints = query.split('&')

    # Check if the first item is either a list of variables (projection)
    # or a selection.
    relops = ['<', '<=', '>', '>=', '=', '!=',' =~']
    for relop in relops:
        if relop in constraints[0]:
            vars_ = []
            queries = constraints[:]
            break
    else:
        vars_ = constraints[0].split(',')
        queries = constraints[1:]
    
    fields = odict()
    p = re.compile(r'(?P<name>[^[]+)(?P<shape>(\[[^\]]+\])*)')
    for var in vars_:
        if var:
            # Check if the var has a slice.
            c = p.match(var).groupdict()
            id_ = quote(c['name'])
            fields[id_] = getslice(c['shape'])

    return fields, queries


def escape_dods(dods, pad=''):
    """
    Escape a DODS response.

    This is useful for debugging. You're probably spending too much time
    with pydap if you need to use this.
    """
    if 'Data:\n' in dods:
        index = dods.index('Data:\n') + len('Data:\n')
    else:
        index = 0

    dds = dods[:index]
    dods = dods[index:]

    out = []
    for i, char in enumerate(dods): 
        char = hex(ord(char))
        char = char.replace('0x', '\\x')
        if len(char) < 4: char = char.replace('\\x', '\\x0')
        out.append(char)
        if pad and (i%4 == 3): out.append(pad)
    out = ''.join(out)
    out = out.replace(r'\x5a\x00\x00\x00', '<start of sequence>')
    out = out.replace(r'\xa5\x00\x00\x00', '<end of sequence>\n')
    return dds + out


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()